图2K_v的可旋转(4,6)圈系(英文)
1-Rotational (4,6)-Cycle Systems of Graph 2K_v
摘要
证明了图2Kv的可旋转(4,6)圈系存在的充分必要条件为:v≥10, v≡ 0, 5 (mod 10).
In this paper, it is shown that there exists a 1-rotational (4,6)-cycle system of 2Kv, if and only if v≥10, v≡0,5 (mod 10).
出处
《数学研究》
CSCD
2007年第3期266-274,共9页
Journal of Mathematical Study
基金
Supported by NSFC grant 10471093
关键词
(4
6)圈系
1-可旋转
差
(4,6)-cycle system
1-rotational
difference
参考文献8
-
1Lindner C C, Rodger C A. Decomposition into cycles II, Cycle systems, in Contemperory Design Theory: A collection of Surveys. Wiley, New York, 1992, 325--369, Eds: Dinitz, J.H. and Stinson, D. R.
-
2Rodger C A. Cycle systems, The CRC handbook of combinatorial designs, Colbourn C. J. and Dinitz J. H. (Editors) CRC Press, Boca Raton, FL, 1996, 266--277.
-
3Alspach B. The Oberwolfach problem, The CRC handbook of combinatorial designs, Colbourn C. J. and Dinitz J. H. (Editors) CRC Press, Boca Raton, FL, 1996, 394--345.
-
4Kohler E. Das Oberwolfacher problem. Mitt Math Ges Humburg 1973, 10:52--57.
-
5Alspach B, Schellengberg P J, Stinson D R, Wagner D. The Oberwolfach problem and factors of uniform odd length cycles. Journal of Combinatorial Theory Ser A 1989, 52 : 20-- 43.
-
6Gvozdjak P. On the Oberwolfach problem for complete multigraphs. Discrete Math 1997, 173: 61 -- 69.
-
7Hoffman D J, Shellenberg P J. The existence of C,-factorizations of K2n-F. Discrete Math 1991, 97:243 --250.
-
8Buratti M. Rotational k-cycle systems of order v<3k; another proof of the existence of odd cycle systems. Journal of Combinatrial Designs, 2003, 11 : 433-- 444.