期刊文献+

FCC汽油烯烃双分子裂化反应及其与双分子氢转移反应之比的研究 被引量:7

STUDY ON THE BIMOLECULAR CATALYTIC CRACKING REACTION AND ITS RATIO TO THE BIMOLECULAR HYDROGEN TRANSFER REACTION
下载PDF
导出
摘要 以催化裂化汽油为原料,在不同类型的催化剂上进行催化转化试验,探讨催化裂化汽油烯烃双分子裂化反应及双分子裂化反应与双分子氢转移反应之比对液化气和汽油产率的影响。试验结果表明,汽油烯烃在不同类型催化剂上发生裂化反应强弱及裂化反应与氢转移反应之比不同;再生催化剂、较高的反应温度和较高的重时空速有利于裂化反应,从而有利于液化气产率的增加;待生催化剂、较低的反应温度和较低的重时空速有利于氢转移反应,从而有利于汽油收率的增加。通过调变双分子裂化反应与双分子氢转移反应之比,可以使催化裂化工艺的生产方案更具有多样性和灵活性。 The catalytic conversion experiments were processed using FCC naphtha as feed over various catalysts. The bimolecular cracking reactions of olefins were studied and the effect of ratios of bimolecular cracking reactions to hydrogen transfer reactions on the yields of LPG and gasoline were discussed. The results show that under the testing conditions the proceeding of olefins cracking and the ratios of cracking to hydrogen transfer are varied over various catalysts. Comparisons between over regenerated catalyst and spent catalyst show that under relatively high reaction temperature and high WHSV,cracking reactions are favored to enhance LPG yield for the former, and under relatively low reaction temperature and low WHSV, hydrogen transfer reactions are favored to increase gasoline yield for the latter. By proper adjusting the ratios of bimolecular cracking reactions to hydrogen transfer reactions,the product slates of FCC process could be more flexible and various.
出处 《石油炼制与化工》 CAS CSCD 北大核心 2007年第9期1-5,共5页 Petroleum Processing and Petrochemicals
基金 国家重点基础研究发展规划973项目(2006CB202501)资助
关键词 裂化反应 氢转移 汽油料 烯烃 催化剂 参数 cracking reaction hydrogen transfer gasoline stock olefin catalyst parameter
  • 相关文献

参考文献3

二级参考文献24

  • 1Xu Youhao,Wang Xieqing(Research Institute of Petroleum Processing, Beijing 100083).Study on Reaction Mechanism for Cracking FCC Gasoline on Acid Catalyst[J].China Petroleum Processing & Petrochemical Technology,2004,6(1):23-28. 被引量:7
  • 2许友好,龚剑洪,叶宗君,张久顺,龙军.大庆蜡油在酸性催化剂上反应机理的研究[J].石油学报(石油加工),2006,22(2):34-38. 被引量:20
  • 3[1]Weekman V W, Jr. Ind Eng Chem Proc Res Dev, 1969,(3):385
  • 4[2]Venuto P B, Hamilton L A, Landis P S. J Catal, 1966,(5):484
  • 5[3]Venuto P B, Landis P S. Adv Catal, 1968,(18):303
  • 6Haag W O,Dessau R M,Lago R M.Kinetics and mechanism of paraffin cracking with zeolite catalysts[J].Stud Surf Sci Catal,1991,60(3):255-265.
  • 7Kotrel S,Knozinger H,Gates B C.The Haag-Dessau mechanism of protolytic cracking of alkanes[J].Microporous and Mesoporous Materials,2000,35-36:11-20.
  • 8Olah G A.The general concept and structure of carbocations based on differentiation of trivalent (classical) carbenium ions from three-center bound penta-of tetracoordinated (nonclassical) carbonium ions.Role of carbocations in electrophilic reactions[J].J Am Chem Soc,1972,94(3):808-820.
  • 9Grootjans J,Vanrysselberghe V,Vermeiren W.Integration of the total petrochemicals--UOP olefins conversion process into a naphtha steam cracker facility[J].Catalysis Today,2005,106(1-4):57-61.
  • 10Wojciechowski B W,Corma A.Catalytic Cracking Catalysts,Chemistry and Kinetics[M].New York:Marcel Dekker Inc,1986.153.

共引文献242

同被引文献75

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部