摘要
在很多超分辨率复原应用中,正则化参数是未知的。然而通过L-曲线估计正则化参数的计算代价十分昂贵。本文提出在超分辨率复原中使用基于Lanczos算法和Gauss积分的方法来高效计算正则化参数。该方法用Gauss积分来计算矩阵矩,通过部分Lancros算法来计算L曲线的曲率带。该方法可减少正则化参数的计算代价和确定Lancros算法的恰当迭代次数。
In many super-resolution image restoration applications, the regular parameters are not known. However, the computationa for the estimation of the unknown parameters is quite costly though L-curve. The paper proposes an efficient method based on the Lanczos algorithm and Gauss quadrature rules in super- resolution image restorations. The method can compute matrix moments though Gauss quadrature rules. L-curvature ribbon is yielded with partial Lanczos algorithm. The method can reduce the computational complexity of the regular parameters and determine the suitable iterative times for the Lanczos algorithm.
出处
《计算机科学》
CSCD
北大核心
2007年第9期218-220,共3页
Computer Science
基金
黑龙江省教育厅科学基金(10551115)
北京印刷学院院选人才引进基金项目
关键词
曲率带
正则化参数
超分辨率图像
Curvature bounds, Regular parameter, Super-resolution image