期刊文献+

局部L-凸空间中的平衡问题 被引量:1

Equilibrium Theorems in Locally L-Convex Spaces
下载PDF
导出
摘要 在没有线性结构的局部L-凸空间中研究了具有多值支付函数的约束Nash-型平衡问题和约束竞争Nash-型平衡问题.应用涉及集值映射类KKM(X,Y)的Himmelberg型不动点定理,在非紧的局部L-凸空间中证明了这两种类型平衡问题的存在定理. Some constrained Nash-type equilibrium problems and constrain competitive Nash-type equilibrium problems with multivalued functions are established in locally L-convex spaces without linear structure. By using a Himmelberg type fixed-point theorem for mapping with KKM property, the existence results of these two types of equilibrium problems are obstained in noncompact locally L- Convex spaces.
作者 郑莲
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期582-586,共5页 Journal of Sichuan Normal University(Natural Science)
关键词 局部L-凸空间 约束Nash型平衡问题 竞争Nash型平衡问题 KKM性质 Himmelberg型不动点定理 存在定理 Locally L-convex spaces Constrained Nash-type equilibrium problems Competitive Nash-type equilibrium problems KKM property Himmelberg type fixed-point theorem The existence
  • 相关文献

参考文献3

二级参考文献67

  • 1丁协平.没有紧性,连续性和凹性的多准则对策的帕雷多平衡[J].应用数学和力学,1996,17(9):801-808. 被引量:7
  • 2Ding X P.Existence of soluions for quasi-equilibrium problems[J].J Sichuan Normal Univ,1998,21(6):603-608.
  • 3Ding X P.Generalized quasi-variational inequalities,optimization and equilibrium problems[J].J Sichuan Normal Univ,1989,13(3):22-27.
  • 4Tan K K, Zhaag X L. Fixed point theorems on G- convex spaces and Applications[J]. Proe Nonlinear Funct Anal Appl,1996,1(1):1 - 19.
  • 5Tarafdar E. A fixed point theorem and equilibrium point of an abstract economy[J]. J Math Econom, 1991,20(1) :211 - 218.
  • 6Tarafdar E. Fixed point theorems in H-spaces and equilibrium points of abstract economies[J]. J Austral Math Soc (Ser A), 1992,53(1) :252 - 260.
  • 7Toussaint S. On the existence of equilibra in economies with infinite commodities and without ordered preferences[J]. J Econom Theory,1984,33(1) :98 - 115.
  • 8Tulcea C I. On the equilibriums of generalized games[R]. The Center for Mathematical Studies in Economics and Management Science,1986.696.
  • 9Tulcea C I. On the approximation of upper semi-continuous correspondences and and the equilibriums of generalized games[J]. J Math Anal Appl, 1988,136(1) :267 - 189.
  • 10Yarnnelis N C, Ptabhakar N D. Existence of maximal elements elements and equilibria in linear topological spaces[J]. J Math Econom,1983,12(2) :233 - 245.

共引文献17

同被引文献28

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部