期刊文献+

具有染病年龄结构的SEIR流行病模型的稳定性 被引量:3

Analysis of an SEIR Epidemic Model with Age of Infection
原文传递
导出
摘要 建立和研究了一类具有染病年龄结构的SEIR流行病模型.得到了该模型的基本再生数R0的表达式.证明了当R0<1时,无病平衡点E0不仅局部渐近稳定,而且全局吸引;当R0>1时,无病平衡点E0不稳定,此时存在稳定的地方病平衡点. An SEIR epidemic model with age of infectionis formulated in this paper. Basic reproductivenumber of this model is obtained. It is proved that the disease free equilibruim Eois globally asymptotically stableif R0 〈 1, the enderfiic equilibrium E1 is locally asymptotically stable if R0〉 1.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第18期100-106,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(10371105 10671166) 河南省杰出青年科学基金(0312002000)
关键词 染病年龄结构 SEIR流行病模型 基本再生数 无病平衡点 地方病平衡点 稳定性 age of infection, SEIR epidemic models basic reproductive number equilibria stability
  • 相关文献

参考文献14

  • 1Kermack M D, Mckendrick A G. Contribution to the mathematical theory of epidemics[J]. Part Ⅰ Proc Roy Soc A,1927,115(5):.700--721.
  • 2Christopher M Kribs-Zelta, Jorge X Velasco-Hernandez. A simple vaccination model endemic states [J]. Math Biosci, 2000, 164: 183--201.
  • 3Meng Fan, Michael Y Li, Ke Wang. Global stability of an SEIS epidemic model with recruiment and a varying total population size[J]. Math Biosci, 2001, 170: 199--208.
  • 4Jianquan Li, Zhien Ma. Qualitative Analyses of SIS epidemic model with vaccination andvarying total population size[J]. Mathematical and Computer Modelling, 2002,35 :1235--1243.
  • 5Carlos Castillo-Chavez, Zhilan Feng. Global stability an age-structure model for TB and its applications to optimal vaccination statigies[J]. Math Bios, 1998,151 : 135--154.
  • 6Youngjoon Cha, Mimmo Iannelli, Fabio A Milner. Stability change of epidemic model[J]. Dynamic Systems and Appications, 2000, 9: 361--376.
  • 7Xuezhi Li, Geni Guper, Guangtian Zhu. Threshold and stability Results for an age-structured SEIR epidemic model[J]. Computers and Mathematics with Applications, 2001,42: 883--907.
  • 8Horst R Thieme, Carlos Castillo-Chavez. How may infection age-dependent infectivity affect the dynamics of HIV/AIDs[J]. SIAM J Appl Math,1993,53:1447--1479.
  • 9Feng Z, Innelli M, Milner F A. A two-strain TB model with age of infection[J]. SIAM J Appl Math,2002,62:1634--1656.
  • 10Iannelli M, Maia Marcheva, Xuezhi Li. Strain Replacement in an Epidemic Modelwith Perfect Vaccination[M]. Mathematical Bioscience, 2005,195 (1) : 23--46.

同被引文献25

  • 1Hethcote H W, Van Den Driessche P. Some epidemiological mod- els with nonlinear incidence [J]. J Math Biol, 1991, 29(3): 271-287.
  • 2Michael Y Li, James S Muldowney, Van Den Driessche P. Global stability of SEIRS models in epidemiology [J].Canadian Appl Math Quarterl, 1999, 7(4): 409-425.
  • 3Song Jian, Yu Jingyuan. Population system control [M]. Berlin: Springer-Verlag, 1987.
  • 4Thieme H R, Castillo-Chavez C. How may infection-age-dependent infectivity affect the dynamics ofHIV/AIDS [J]. SIAM J Appl Math, 1993, 53(5): 1447-1479.
  • 5Kim M Y, Milner F A. A mathematical model of epidemics with screening and variable infectivity [J]. Math Comput Modelling, 1995, 21 (7): 29-42.
  • 6Kim M Y. Existence of steady state solutions to an epidemic model with screening and their asymptotic stability [J]. Appl Math Comput, 1996, 74(1): 37-58.
  • 7Kribs-Zaleta C M, Martcheva M.Vaccination strategies and backward bifurcation in an age-since-infection structured model [J]. Math Biosci, 2002, 177/178(2): 317-332.
  • 8Inaba H, Sekine H.A mathematical model for Chagas disease with infection-age-dependent infectivity [J]. Math Biosci, 2004, 190(4): 39-69.
  • 9Li Jia, Zhou Yican, Ma Zhi'en, et al. Epidemiological models for mutating pathogens [J]. SIAM J Appl Math, 2004, 65(1): 1-23.
  • 10Xu Wenxiong, Castillo-Chavez C.Existence and uniqueness of solutions of a model in differential-integral [J]. Chines J Engin Math, 1998, 15(1): 108-112.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部