期刊文献+

多滞量高阶非线性差分方程的全局吸引性

Global Attractivity of Higher-order Nonlinear Difference Equation
原文传递
导出
摘要 研究了差分方程xn+1=(a+bxn)/(A+B xn-k)(C+D xn-l),n=0,1,2,….其中a,b,A,B,C∈(0,∞),D∈[0,∞),k,l是正整数,初值条件x-k,…,x-1及x0是任意正常数的全局吸引性,推广了相关文献的相关结果. The global attractivity of the nonlinear difference equationXn+1=a+bxn/(A+Bxn-k)(C+Dxn-t),n=0,1,2,… is investigated, where a,b, A, B, C E (0, ∞), D E [- 0, ∞), k,l are positive integers and the initial conditions xk…,x-t and x0 are arbitrary positive number. It is shown that the unique positive equilibrium of the equation is global attractive.
作者 侯成敏
出处 《数学的实践与认识》 CSCD 北大核心 2007年第18期180-183,共4页 Mathematics in Practice and Theory
基金 国家自然科学基金项目(10661011)
关键词 差分方程 全局吸引性 平衡点 时滞 difference equation global attractivity equilibriun delay
  • 相关文献

参考文献4

  • 1Koeic V L, Lada, s G. Global Behavior of Nonlinear Difference Equations of Higher order with Application[M]. Dordrecht: Kluwer Academic Publishers, 1993.
  • 2Kocic V L, Ladas G, Rodrigues I W. On rational recursive Sequences[J]. J Math Anal Appl, 1993,173:127--157.
  • 3Kocie V L, Ladas G. Global attractivity in a nonlinear second-order difference equation[J]. Communications on pure and Applied Mathematics, 1995,48 :1115--1122.
  • 4Li Wantong, Zhang Yanhong, SU Youhui. Global Attractivity in a class of higher-order nonlinear difference equation[J}. Acta Maths , 2005 , 25 B(1) :59--66.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部