摘要
研究了差分方程xn+1=(a+bxn)/(A+B xn-k)(C+D xn-l),n=0,1,2,….其中a,b,A,B,C∈(0,∞),D∈[0,∞),k,l是正整数,初值条件x-k,…,x-1及x0是任意正常数的全局吸引性,推广了相关文献的相关结果.
The global attractivity of the nonlinear difference equationXn+1=a+bxn/(A+Bxn-k)(C+Dxn-t),n=0,1,2,… is investigated, where a,b, A, B, C E (0, ∞), D E [- 0, ∞), k,l are positive integers and the initial conditions xk…,x-t and x0 are arbitrary positive number. It is shown that the unique positive equilibrium of the equation is global attractive.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第18期180-183,共4页
Mathematics in Practice and Theory
基金
国家自然科学基金项目(10661011)
关键词
差分方程
全局吸引性
平衡点
时滞
difference equation
global attractivity equilibriun delay