摘要
针对专家系统开发过程中遇到的"知识瓶颈"问题,提出了神经网络与专家系统相结合的方法,利用神经网络训练和学习得到的故障数据来丰富专家系统的知识库,提高专家系统诊断的准确性。基于某型燃气轮机对此方法进行了验证,结果证明这种方法是可行的。
The method of combining neural network and expert system to solve the problem of lack of knowledge during developing expert system is put forward.The fault data trained from neural network to enrich the knowledge base of expert system and to enhance the veracity of diagnosis system is used.Meanwhile,the method on the gas turbine is practiced,and the result proves that the method is feasible.
出处
《科学技术与工程》
2007年第21期5580-5583,共4页
Science Technology and Engineering