期刊文献+

基于非支配排序的遗传规划的建模方法

Genetic programming based on non-dominated sorting
下载PDF
导出
摘要 分析了利用遗传规划进行复杂非线性系统建模中存在的过学习问题,提出了一个基于插值函数保护法和多目标非支配排序优化方法的遗传规划建模方法。文章利用NSGA所提出的非支配排序的思想结合传统的遗传规划来实现对于模型的精确度、复杂度和曲率的平衡。同时改进了传统遗传规划所使用的函数保护策略进一步降低了过学习现象,得到具有较高泛化能力和简洁性的最优模型。实验结果证明了该方法的有效性。 Based on the analysis of the overfitting phenomenon in genetic programming,a new protected approach based on interpolation for some mathematical functions is proposed.To get more accuracy model without losing generalization,a regularization term based on the curvature of a nonlinear model,the complexity of a model and the training errors should be considered.However,their effects on the training process are difficult to decide and estimate.Generally,the degrees of these effects are decided by the experience or the knowledge of the data.Here,a method of non-dominated sorting is used in GP,and then their effects can be selected more impersonally.Experiments show the effect of the method.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第29期71-73,共3页 Computer Engineering and Applications
基金 安徽省教育厅资助科研课题( the Research Project of Department of Education of Anhui Province China under Grant No.2005jq1033)
关键词 遗传规划(GP) 非支配排序遗传算法 泛化能力 曲率 Genetic Programming NSGA generalization curvature
  • 相关文献

参考文献8

  • 1Wolfgang B,Francone F D,Robert E K,et al.Genetic programming:an introduction[M].San Francisco,CA:Morgan Kaufmann,1998.
  • 2乐美龙,方奕.基于遗传规划方法的集装箱吞吐量预测[J].上海交通大学学报,2003,37(8):1246-1250. 被引量:14
  • 3张武军,叶剑锋,梁伟杰,方鸽飞.基于改进遗传算法的多目标无功优化[J].电网技术,2004,28(11):67-71. 被引量:81
  • 4Koza J R.Genetic programming:on the programming of computers by means of natural selection[M].Cambridge,MA,USA:MIT Press,1992.
  • 5Srinivas N,Deb K.Multiobjective function optimization using nondominated sorting genetic algorithms[J].Evolutionary Computation,1995,2(3):221-248.
  • 6Terence S,James A F.Effects of code growth and parsimony pressure on populations in genetic programming[J].Evolutionary Computation,1999,6 (4):293 -309.
  • 7Nikolaev N Y,Iba H.Regularization approach to inductive genetic programming[J].IEEE Trans on Evolutionary Computation,2001,5(4):359-375.
  • 8Keijzer M.Improving symbolic regression with interval arithmetic and linear scaling[C]//LNCS:EuroGP 2003,2003,2610:70-82.

二级参考文献13

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部