期刊文献+

基于联合评估网络的虹膜图像实时预评估

Iris image real-time pre-estimation based on associated network
下载PDF
导出
摘要 实际的虹膜识别系统会遇到因为各种原因产生的不同类型的坏样本图像,如果它们进入系统的识别进程,常常会增加系统的注册失败率,也会导致定位或者识别的错误。而现有的图像质量评估方法是在完成虹膜定位或者粗定位之后,根据虹膜部分的清晰度和分辨率来判定是否为坏样本。因此实际上只能处理部分类型的坏样本,而且计算耗费大。论文详细分析了坏样本产生的原因和特点,提出了一种基于联合评估网络的实时预评估方法,在定位或粗定位开始之前,检测暂时存储的样本图像,根据预评估网络的输出结果来决定是进入下一步处理还是重新采集。试验结果表明,该方法可以检测出大部分类型的坏样本,检测速度快,而且检测的错误率相当低,能够满足实时虹膜识别系统的评估实时性和准确性的要求。 There are different types of bad images when an iris identification application system captured iris images.It is well known that these bad images usually result in localization or identification errors and increase the failure rate to enrollment if they are imported into the identification processing.Because previous image quality evaluation methods estimate it whether bad or else by the resolution and the definition of the iris part after having calculated the iris location of an input image,they just can deal with few types among them.This paper proposes an idea of real-time pre-estimation using the associated estimation network, based on the detailed and objective analysis of reasons resulting in the bad-image,in which it pre-estimates images temporarily saved in memory before the localization or rough localization process and decides the system whether captures an iris sample again or turns into the next step by the output of the network.The experimental result is shown that the method can detects most types of the bad-image with comparatively low false rate and fairly large throughput.It should satisfy the pre-estimation requirement of a real-time iris identification system.
作者 叶学义
出处 《计算机工程与应用》 CSCD 北大核心 2007年第29期78-81,92,共5页 Computer Engineering and Applications
关键词 图像预评估 实时虹膜识别系统 联合评估网络 坏样本 image pre-estimation real-time iris identification system associated pre-estimation network bad-image
  • 相关文献

参考文献10

  • 1Jain A K,Pankanti S,Prabhakar S,et al.Biometrics:a grand challenge[C]//Proceedings of International Conference on Pattern Recognition,Cambridge,UK,2004.
  • 2NIST report to the United States Congress.Summary of NIST Standards for Biometric Accuracy,Tamper Resistance,and Interoperability[R/OL].2001-11.ftp://sequoyah.nist.gov/pub/nist_internal_reports/NISTAPP_Nov02.pdf.
  • 3何家峰,叶虎年,叶妙元.虹膜图象质量评价的研究[J].中国图象图形学报(A辑),2003,8(4):387-391. 被引量:8
  • 4Daugman J.Iris recognition:current state of the art[R].The ASI'04 in HongKong,P.R.China,2004-12.
  • 5Rumelhart D E,Hinton G E,Williams R J.Learning internal representations by error propagation in Parallel Distributed Processing[M]//Rumelhart D E,McClell J L.EDS,Cambridge,MA:MIT Press,1986:318-362.
  • 6Eberhart R C,Dbbins R W.Neural network PC tools[M].[S.l.]:Academic Press,1990.
  • 7Webb A R.Statistical pattern recognition[M].2nd ed.[S.L.]:John Wiley & Sons,Ltd.,2002.
  • 8Lippmann R P.Pattern classification using neutral networks[J].IEEE Comm,Magazine,1989:47-64.
  • 9Iris database 1.0 of CASIA[DB/OL].[2006-05].http://www.sinobiometircs.com.
  • 10Iris training database of the first contest of biometrics recognition and testing of China[DB/OL].[2004].http://www.sinobiometrics.com.

二级参考文献5

  • 1Zhang Guang Hua. Method of selecting the best enroll image for personal Identification[P]. US Patent : 597494, 1999-11-02.
  • 2McHugh, James Timothy, Lee, et al. Handheld iris imaging apparatus and method[P]. US Patent: 6289113, 2001-09-11.
  • 3Daugman J G. High confidence visual recognition of persons by a test of statistical independence [J]. IEEE Trans. on PAMI.1993,15(11) :1148-1161.
  • 4Sun Ji Min, Jan Jin Chai. Method for discriminating forgery in iris recognition system[P]. Japan Patent: 298727, 2000-10-24.
  • 5Merrick G M. Personnal identification [P]. WIPO Patent:0101329,2001-01-04.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部