期刊文献+

基于贝叶斯网络的煤与瓦斯突出预测研究 被引量:2

Research of coal and gas outburst prediction based on Bayesian network model
下载PDF
导出
摘要 贝叶斯网络是目前不确定知识和推理领域最有效的理论模型之一。为了正确预测煤与瓦斯突出的危险性,提出了一种基于贝叶斯网络的煤与瓦斯突出预测方法。在综合影响煤与瓦斯突出的因素和领域专家知识的基础上建立了网络结构,通过对先验知识和样本数据的学习,实现了煤与瓦斯突出的预测,取得了较好的效果。实验表明,该模型网络学习速度快,准确性高,是一种有效的煤与瓦斯突出危险性预测方法。 Bayesian network is one of the most efficient models in the uncertain knowledge and reasoning field.In order to accurately predict the risk of coal and gas outburst,a coal and gas outburst prediction model based on Bayesian network has been put forward in the paper.The network model has been created on the basis of the factor in relation to coal and gas outburst and the knowledge of the field experts.After studying from the prototype data,the prediction of coal and gas outburst has been successfully achieved and has good results.The experiment demonstrates that the prediction model has a fast study speed and good prediction accuracy,which is an efficient way in predicting coal and gas outburst.
作者 张克 汪云甲
出处 《计算机工程与应用》 CSCD 北大核心 2007年第29期220-221,248,共3页 Computer Engineering and Applications
基金 国家自然科学基金( the National Natural Science Foundation of China under Grant No.50534050)
关键词 贝叶斯网络 数据挖掘 煤与瓦斯突出 预测 Bayesian networks data mining coal and gas outburst prediction
  • 相关文献

参考文献8

二级参考文献42

  • 1程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 2郝吉生.应用神经网络技术预测煤与瓦斯突出.第五届中国人工智能联合学术会议论文集--’98人工智能进展[M].西安:西安交通大学出版社,1998.189-195.
  • 3蒋承林.[D].徐州:中国矿业大学,1995.
  • 41.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61
  • 52.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207
  • 63.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295
  • 74.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243
  • 85.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430
  • 96.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45
  • 107.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61

共引文献218

同被引文献183

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部