期刊文献+

一种基于概念格的关联规则挖掘算法 被引量:2

Algorithm for mining association rules based concept lattice
下载PDF
导出
摘要 关联规则挖掘是数据挖掘中的一项核心任务,而由二元关系导出的概念格则是一种非常有用的形式化分析工具,它体现了概念内涵和外延的统一,反映了对象和特征间的联系以及概念间的泛化与例化关系。一个概念内涵与一个关联规则中的闭合项集可以一一对应。提出了一种新有基于概念格的关联规则挖掘算法Arca(Association Rule based Concept lAttice)。Arca算法通过概念矩阵构造部分概念格,使概念格中的每个概念对应一个闭合频繁项集。然后生成一些关联规则,在这些关联规则上通过定义了四个算子来生成了所有关联规则。 Association rule discovery is one of kernel tasks of data mining.Concept lattice,induced from a binary relation between objects and features,is a very useful formal analysis tool.It represents the unification of concept intension and extension.It reflects the association between objects and features,and the relationship of generalization and specialization among concepts.There is a one-to-one correspondence between concept intensions and closed frequent itemsets.This paper presents an efficient algorithm for mining association rules based concept lattice called Arca (Association Rule based Concept lAttice).Arca algorithm uses conceptmatrix to build a part of concept lattice,in which the intension of every concept be put into one-to-one correspondence with a closed frequent itemset.Then all association rules are discovered by 4 operators which are defined in this paper performed on these concepts
作者 王甦菁 陈震
出处 《计算机工程与应用》 CSCD 北大核心 2007年第28期157-161,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.50378042 No.50338030)。
关键词 概念格 形式概念分析 数据挖掘 关联规则 concept lattice formal concept analysis data mining association rule
  • 相关文献

参考文献17

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[J].ACM SIGMOD Record,1993,22:207-216.
  • 2Savasere A,Omiecinski E,Navathe S.An efficient algorithm for mining association rules in large databases[C]//Proceedings of the 21st VLDB Conference.the 21st VLDB Conference,Zurich,1995:432-444.
  • 3Park J S,Chen M S,Yu P S.An effective hash-based algorithm for mining association rules[C]//ACM SIGMOD Record,[S.1.]:ACM Press,1995,24:175-186.
  • 4Zaki M J.New algorithms for fast discovery of association rules[R].University of Rochester,1997.
  • 5Shenoy P.Turbo-charging vertical mining of large databases[C]//ACM SIGMOD Record.[S.l.]:ACM Press,2000:22-33.
  • 6Pasquier N.Discovering frequent closed itemsets for association rules[C]//Proceeding of the 7th International Conference on Database Theory,Jerusalem,1999.Berlin:Springer-Verlag,1999,1540:398-416.
  • 7Pei J,Han J,Mao R.An efficient algorithm for mining frequent closed itemsets[C]//2000 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,Dallas,2000:21-30.
  • 8Han J.FreeSpan:frequent pattern-projected sequential pattern mining[C]//Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining.2000.Boston:ACM Press,2000:355-359.
  • 9Han J.PrefixSpan:mining sequential patterns efficiently by prefixprojected pattern growth[C]//The Proceedings of 17th International Conference,2001:215 -224.
  • 10Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//2000 ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery,Dallas,2000:1-12.

同被引文献21

  • 1王旭阳,李明.基于概念格的数据挖掘方法研究[J].计算机应用,2005,25(4):827-829. 被引量:14
  • 2王德兴,胡学钢,刘晓平,王浩.基于概念格和Apriori的关联规则挖掘算法分析[J].合肥工业大学学报(自然科学版),2006,29(6):699-702. 被引量:8
  • 3胡学钢,刘卫,王德兴.基于剪枝概念格的项集知识表示与挖掘[J].计算机工程与应用,2007,43(22):176-178. 被引量:4
  • 4AGRAWAL R, IMIELINSKI T, SWAMI A. Mining association rules between sets of items in large databases[ C]//Proc of ACM SIFMOD International Conference on Management of Dara. New York: ACM Press, 1993:207- 216.
  • 5HAN Jia-wei, PEI Jian, YIN Yi-wei. Mining frequent patterns without candidate generation [ C ]//Proc of ACM SIGMOD International Conference on Management of Data. New York : ACM Press, 2000 : 1- 12.
  • 6CHENG Hong, YAN Xi-feng, HAN Jia-wei, et al. Discriminative frequent pattern analysis for effective classification [ C ]//Proc of ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. 2000:350- 354.
  • 7HAN J, KAMBER M. Data mining-concepts and techniques [ M]. Sam Francisco: Morgan Kaufmann Publishers, 2001.
  • 8SNELTING G. Reengineer of configuration based on mathematical concept analysis [ J ]. ACM Transactions on Soft2 ware Engineering and Met horology, 1996, 5(2) :146-189.
  • 9HU Xue-gang, WANG Hao, WANG Man, et al. The research on design knowledge representation and acquisition in intelligence CAD [ C]//Proc of the 2nd International Conference on Computer Aided Industrial Design and Conceptual Design. 1999:236-239.
  • 10HU Xue-gang, WANG Hao, WANG Man, et al. The design knowledge representation and reasoning in intelligence CAD based on extended concept lattice[ C ]//Proc of the 3rd International Conference on Computer aided Industrial Design and Conceptual Design. 2000: 460- 463.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部