期刊文献+

基于模糊分割的支持向量机分类器 被引量:3

Fuzzy partition based Support Vector Machine classifier
下载PDF
导出
摘要 支持向量机算法对噪声点和异常点是敏感的,为了解决这个问题,人们提出了模糊支持向量机,但其中的模糊隶属度函数需要人为设置。提出基于模糊分割的支持向量机分类器。在该算法中,首先根据聚类有效性用模糊c-均值聚类分别对训练集中的正负类数据聚类;然后,选择距离最近的c个聚类对构成c个二分类问题;最后,对c个二分类器用加权平均策略得到最终分类结果。为了验证所提算法的有效性,对三个UCI数据集进行了数值实验,结果表明,该算法能有效提高带噪声点和异常点数据集分类的预测精度。 Support Vector Machine(SVM) is sensitive to noises and outliers.To overcome this drawback,Fuzzy Support Vector Machine(FSVM) is developed,in which the fuzzy membership function is set subjectively.In this study,a Fuzzy Partition based Support Vector machine Classifier(FP-SVC) is presented to deal with the classification problems with noises or outliers.In the proposed algorithm,fuzzy c-means clustering is firstly adopted to cluster each of two classes from the training set based on the clustering validity;Then c nearest pairs of clusters are searched,which form c binary classification problems;Finally,the weighted average strategy is applied to these c binary classifiers for inducing the final classification results.The experiments are conducted on three benchmarking UCI datasets for testing the generalization performance of FP-SVC.The experimental results show that FP-SVC is valid for improving the predicting accuracy of the classification problems with noises or outliers.
作者 杨晓伟 闫丽
出处 《计算机工程与应用》 CSCD 北大核心 2007年第28期187-189,248,共4页 Computer Engineering and Applications
基金 广东省自然科学基金(the Natural Science Foundation of Guangdong Province of China under Grant No.04020079) 吉林大学符号计算与知识工程教育部重点实验室开放课题(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education No.93K-17-2006-03) 华南理工大学自然科学基金(Natural Science Foundation of South China University of Technology No.B13-E5050190)
关键词 模糊分割 聚类有效性 支持向量机 噪声点 异常点 fuzzy partition clustering validity Support Vector Machine ( SVM ) noise outlier
  • 相关文献

参考文献11

  • 1Lin C F,Wang S D.Fuzzy support vector machines[J].IEEE Transactions on Neural Networks,2002,13(2):464-471.
  • 2Lin C F,Wang S D.Training algorithms for fuzzy support vector machines with noisy data[J].Pattern Recognition Letters,2004,25:1647-1656.
  • 3Jiang X F,Yi Z,Lv J C.Fuzzy SVM with a new fuzzy membership Function[J].Neural Computing and Application,2006,15:268-276.
  • 4Leski J M.An ε-margin nonlinear classifier based on fuzzy if-then rules[J].IEEE Transactions on Systems,Man and Cybernetics-Part B:Cybernetics,2004,34(1):68-76.
  • 5Wang Y Q,Wang S Y,Lai K K.A new fuzzy support vector machine to evaluate credit risk[J].IEEE Transactions on Fuzzy Systems,2005,13(6):820-831.
  • 6Gath I,Geva A B.Unsupervised optimal fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):773-781.
  • 7Xie X L,Beni G.A validity measure for fuzzy clustering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(8):841-847.
  • 8Bezdek J C,Pal N R.Some new indexes of cluster validity[J].IEEE Transactions on systems,Man And Cybernetics-Part B:Cybernetics,1998,28(3):301-315.
  • 9Halkidi M,Batistakis Y,Vazirgiannis M.On clustering validation techniques[J].Journal of Intelligent Information Systems,2001,17:107-145.
  • 10Fan R E,Chen P H,Lin C J.Working set selection using order information for training support vector machines[J].Journal of Machine Learning Research,2005,6:1889-1917.

同被引文献36

  • 1姚屏,申群太,王俊年.基于自适应神经网络滤波的噪声消除[J].计算机工程与应用,2005,41(28):65-67. 被引量:12
  • 2郑红军.统计学习理论与支持向量机概述[M].北京:现代电子技术出版社,2003.
  • 3Vapnik V N.Statistical learning theory[M].New York:Wiley-Interscience Publication, 1998:1-20.
  • 4Liu Baoding.Inequalities and convergence concepts of fuzzy and rough variables[J].Fuzzy Optimization and Decision Making,2003(2): 87-100.
  • 5Liu Baoding.Theory and practice of uncertain programming [M]. Heidelberg: Physica-Verlag, 2002:15-234.
  • 6Lin C F,Wang S D.Fuzzy support vector machines [J].IEEE Transactions on Neural Networks, 2002,13 (2) : 464-471.
  • 7Huang Xixia, Chen Shanben.SVM-based fuzzy modeling for the arc welding process[J].Materials Science and Engineering:A, 2006,427 (112):181-187.
  • 8Ha Minghu.The bounds on the rate of convergence of learning process about fuzzy examples [C]//Proceedings of the Third International Conference on Machine Learning and Cybernetics,Shanghai,2004,3:1908-1910.
  • 9Kruse R,Dieter K Meyer.Statistics with vague data[M].[S.l.]:D Reidel Publishing, 1987:1-148.
  • 10van Waterschoot T, Rombouts G,Moonen M.Optimally regularized adaptive filtering algorithms for room acoustic signal enhancement[J].Sigual Processing, 2008: 594-611.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部