期刊文献+

基于云模型的动态交通数据流软划分算法 被引量:5

Dynamic soft classifying algorithm of traffic data stream based on cloud model
下载PDF
导出
摘要 提出了一种交通数据流软划分算法,该算法利用STREAM算法对交通数据流进行了聚类分析,得到了能够反映交通状况不同特征的聚类结果,然后对聚类结果进行了数据挖掘和交通数据流趋势预测。最后在数据流值预测结果的基础上,采用基于云模型划分的算法对交通的预测流值进行分析,得到了更加灵活的控制策略。 This paper proposes a dynamic soft classifying algorithm of traffic data stream,which employs STREAM algorithm to cluster traffic data stream,obtains some categories that are able to reflect the different traffic status.Then,the data mining and the data stream tendency forecast are implemented,and those forecasting values of data stream are analyzed by soft classifying based on cloud model and more flexible control tactics are obtained.
作者 于少伟 曹凯
出处 《计算机工程与应用》 CSCD 北大核心 2007年第28期217-219,245,共4页 Computer Engineering and Applications
关键词 STREAM算法 云模型 软划分 交通数据流 STREAM algorithm cloud model soft classifying traffic data stream
  • 相关文献

参考文献8

二级参考文献24

  • 1蒋嵘,李德毅,陈晖.基于云模型的时间序列预测[J].解放军理工大学学报(自然科学版),2000,1(5):13-18. 被引量:37
  • 2Babcock B, Babu S, Datar M, et al. Models and issues in data stream systems[C]. Madison, Wisconsin, USA:Proc of ACM SIGMOD/SIGACT Conf on Princ of Database Syst. 2002.1-16.
  • 3O'Callaghan L, Mishra N, Meyerson A, et al. Streaming-data algorithms for high-quality clustering[C]. Proc of IEEE International Conference on Data Engineering, 2002.
  • 4Guha S, Mishra N, Motwani R, et al. Clustering data streams[C].Proc of IEEE Symposium on Foundations of Computer Science (FOCS'00), 2000.71-80.
  • 5Guha S, Meyerson A, Mishra N, et al. Clustering data streams:Theory and practice[J]. Knowledge and Data Engineering, IEEE Transactions, 2003, 15(3):515-528.
  • 6Giannella C, HAN Jia-wei, JIAN Pei, et al. Mining frequent patterns in data streams at multiple time granularities[C]. Proc of the NSF Workshop on Next Generation Data Mining, 2002.
  • 7Aggarwal C, Han J, Wang J, et al. A framework for clustering evolving data streams[C]. Berlin, Germany: Proc of Int Conf on Very Large Data Bases (VLDB'03), 2003.
  • 8Dora Cai Y, Clutter D, Pape G, et al. MAIDS mining alarming incidents from data streams[C].Paris, France:Proc of the 23rd ACM SIGMOD, 2004.
  • 9Dong G, Han J, LVS Lakshmanan, et al. Online mining of changes from data streams: Research problems and preliminary result [C], Proc of ACM SIGMOD Workshop on Management and Processing of Data Streams, 2003,.
  • 10Portnoy L, Eskin L, Stolfo S J. Intrusion detection with unlabeled data using clustering[C]. Proc of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001), Philadelphia,2001.

共引文献54

同被引文献54

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部