期刊文献+

基于ICA和SVM的滚动轴承故障诊断方法研究 被引量:4

A fault diagnosis approach for roller bearing based on ICA and SVM
下载PDF
导出
摘要 通过对滚动轴承振动信号的分析处理,提出了基于独立分量分析和支持向量机的故障诊断方法,采用FastICA算法对信号进行分析处理,提取出代表轴承运行状态的投影系数矩阵,并以此作为特征向量来建立支持向量机分类器,利用SVM网络的智能性来判断滚动轴承的工作状态和故障类型。 By analyzing and processing the vibration signals of roller bearing, a fault diagnosis approach based on ICA and SVM is presented. The projection coefficients matrix which represent operating state of the bearing are extracted by analyzing and disposing the signal of bearing on the FastICA method, then taking the matrix as characteristic vectors to definite the fault classifier of the support vector machine. The condition and fault pattern of the roller bearing can be identified with the intellectual ability of SVM network.
出处 《电子技术应用》 北大核心 2007年第10期84-86,共3页 Application of Electronic Technique
关键词 独立分量分析 支持向量机 故障诊断 滚动轴承 independent component analysis support vector machine fault diagnosis roller bearing
  • 相关文献

参考文献5

二级参考文献23

  • 1ZHONG Zhen-mao, CHEN Jin, ZHONG Ping State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiaotong University, Shanghai 200030,P. R. China.The Research of Blind Source Separation (BSS) in Machinery Fault Diagnosis[J].International Journal of Plant Engineering and Management,2001,6(1):41-46. 被引量:1
  • 2胥永刚,张发启,何正嘉.独立分量分析及其在故障诊断中的应用[J].振动与冲击,2004,23(2):104-107. 被引量:46
  • 3[1]Comon P. Independent component analysis, a new concept?[J]. Signal Processing, 1994,36(3):287-314.
  • 4[4]Hyvarinen A, Oja E. Independent Component Analysis:A Tutorial[EB/OL]. http://www.cis.hut.fi/projects/ica/ , 2004-02-20.
  • 5[5]Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999,10(3):626-634.
  • 6[6]Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis[J]. Neural Computation, 1997,9(7):1483-1492.
  • 7Bell A., Sejnowski T., An information - maximization approach to blind separation and blind deconvolution[J]. Neural computation, 7:1129-1159, 1995.
  • 8Cardoao J.F., Soukxaniac A., Blind beamfonning for non-Gaussian signals[J]. IEE Proceedings-F. Vol 140, No. 6,DECEMBER 1993.
  • 9Sunghwna Sohn, CAhsn I-I. Degli. AdvanTages of using fuzzy class menberships in self- organizing map and support vector machines. Smart Engineering Systems Laboratory, Dep. of Engineering Manage - ment, Uni. of Missoui - Rolla,MO65409.
  • 10S. Diwakar, M. A. Essawy, S. Zein Sahatto. An intelligent system for integrated predictive diagnosis. Dep. Of Electrical and Computer Engineering, Tennessee State University ,Nashville. TN- 37209.

共引文献83

同被引文献26

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部