期刊文献+

原子CSL代数中的Lie理想 被引量:1

Lie Ideals in Atomic CSL Algebras
下载PDF
导出
摘要 详细描述了Hilbert空间中原子CSL代数T(L)中的Lie理想的结构。证明了T(L)中的σ-弱算子拓扑闭子空间L是T(L)的Lie理想当且仅当存在T(L)的一个σ-弱算子拓扑闭结合理想J和T(L)的对角的中心的一个子空间E使得J0 L J+E,其中J0是J中迹为零的元素的全体。 A detailed description of the structure of a Lie ideal in an atomic CSL algebra T(F) on a Hilbert space H is given. It is proved that a a-weakly closed subspace L of T(F) is a Lie ideal in T(F) if and only if there exists a a-weakly closed associative ideal J of T(F) and a subspace E of the center of the diagonal part of T(F) such that J^0lohtain inLlohtainJ-kE,where .J^0 is the set of trace-zero elements in J.
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2007年第3期36-39,共4页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助项目(10675086) 国家数学天元基金资助项目(10626031) 山东省自然科学基金资助项目(Y2006A03)
关键词 LIE理想 CLS代数 理想 Lie ideals CLS subalgebras ideals
  • 相关文献

参考文献6

  • 1HERSTEIN I N.On the Lie and Jordan rings of a simple associative ring[J].Amer J Math,1955,77:279-285.
  • 2HOPENWASSER A,PAULSEN V.Lie ideals in operator algebras[J].J Operator Theory,2004,52:325-340.
  • 3纪培胜,王琳.GICAR代数中的闭Lie理想[J].数学学报(中文版),2004,47(5):867-872. 被引量:2
  • 4JI Pei-sheng,WANG Lin.Lie ideal in AF algebra[J].J Math Research and exposition,2005,25(4):589-592.
  • 5DAVIDSON K R.Nest algebras[M]//Pitman Research Notes in Mathematics Series:vol 191.London:Longman Scientific and Technical Pub Co,1988.
  • 6FONG C K,MIERS C R,SOUROUR A R.Lie and Jordan ideals of operators on Hilbert space[J].Proc Amer Math Soc,1982,84:516-520.

二级参考文献9

  • 1Herstein I. N., On the Lie and Jordan rings of a simple associative ring, Amer. J. Math., 1955, 77: 279-285.
  • 2Fong C. K., Miers C. R. and Sourour A. R., Lie and Jordan ideals of operators on Hilbert space, Proc. Amer.Math. Soc., 1982, 84: 516-520.
  • 3Miers C. R., Closed Lie ideals in operator algebras, Canad. J. Math., 1981, 33: 1271-1278.
  • 4Hudson J. D., Marcoux L. W. and Sourour A. R., Lie ideals in triangular operator algebras, Tran. Amer.Math. Soc., 1998, 350: 3321-3339.
  • 5Hopenwasser A., Paulsen V., Lie ideals in operator algebras, arXiv Math. OA, 2002, 0211347.
  • 6Marcoux L. W., On the closed Lie ideals of certain C*-algebras, J. Integer Equatiion Operator Th., 1995, 22:463-475.
  • 7Li B. R., Operator algebra, Beijing: Science Press, 1998 (in Chinese).
  • 8Bratteli, Inductive limits of finite dimentional C*-algebras, Trans. Amer. Math. Soc., 1972, 171: 195-234.
  • 9Davidson K. R., C*-algebras by example, Providence, Rehode Island, 1996.

共引文献1

同被引文献8

  • 1杜炜,张建华.套代数上的可乘导子[J].纺织高校基础科学学报,2007,20(2):153-155. 被引量:7
  • 2MARTINDALE W S. When are multiplieative mappings additive? [J]. Proe Amer Math Soc, 1969,21(3):695-698.
  • 3DAIF M N. When is a multiplicative derivation additive? [J]. Internat J Math and Math Sci,1991,14(3) :615-618.
  • 4CHEUNG Wai-shun. Mappings on triangular algebras[D]. Victoria:Department of Mathematics and Statistics,University of Victoria, 2000.
  • 5CHEUNG Wai-shun. Commuting maps of triangular algebras[J]. J London Math Soc,2001,63(1) :117-127.
  • 6CHEUNG Wai-shun. Lie derivations of triangular algebras [J]. Linear and Mutilinear Algebra, 2003,51(3):299-310.
  • 7JI Pei-sheng. Jordan maps on triangular algebras [J ]. Linear Algebra and its Applications, 2007,426 (1) : 190-198.
  • 8ZHANG Jian-hua,YU Wei-yan. Jordan derivations of triangular algebras [J]. Linear Algebra and its Applications, 2006,419 (1), 251-255.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部