期刊文献+

630kVA三相高温超导变压器的研制和并网试验 被引量:20

Development and Test in Grid of 630 kVA Three-phase High Temperature Superconducting Transformer
下载PDF
导出
摘要 研发了630kVA、10.5kV/0.4kV三相交流高温超导变压器,并成功进行了并网试验运行。该变压器导线采用多芯Bi2223/Ag不锈钢加强高温超导带材;高压绕组采用多层圆筒式结构,层间置有绝缘和冷却通道;低压绕组采用并联饼式结构。铁心采用非晶合金材料,为三相五柱式结构。绕组置于环形带有室温孔径的玻璃钢低温杜瓦中,以保证铁心处于室温环境。超导线的绝缘利用自主开发的包扎机以聚酰亚胺薄膜采用双半叠包工艺进行绝缘包扎。经过对该变压器进行基本性能测试,满足并网试验运行要求。 A 630 kVA 10.5 kW0.4 kV three-phase high temperature superconducting (HTS) power transformer was successfully developed and tested in live grid. The windings were wound by hermetic stainless steel-enforced multifilamentary Bi2223/Ag tapes. The structures of primary windings are solenoid with insulation and cooling path among layers, and those of secondary ones double-pancakes connected in parallel. Toroidal cryostat is made from electrical insulating GFRP materials with room temperature bore for commercial amorphous alloy core with five limbs. Windings are laid in the toroidal cryostat so that the amorphous core operates at room temperature. An insulation technology of double-half wrapping up the Bi2223/Ag tape with kapton film is performed by winding machine which was developed by ourselves. Fundamental characteristics of the transformer are obtained by standard short-circuit and no-load tests, it is shown that the transformer meets operating requirements in live grid.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第27期24-31,共8页 Proceedings of the CSEE
基金 国家863高技术基金项目(2005AA306381) 特变电工支持项目及中国科学院"百人计划"支持项目(0640111C11)。~~
关键词 高温超导变压器 BI2223/AG带材 非晶合金 绕组 损耗 液氮 high temperature superconducting transformer Bi2223/Ag tape amorphous-alloy windings loss liquid nitrogen
  • 相关文献

参考文献20

  • 1Osami Tsukamoto. Roads for HTS power applications to go into the real world: Cost issues and technical issues[J]. Cryogenics, 2005, 45(1): 3-10.
  • 2Mitsuho Furuse, Shuichiro Fuchino Noboru Higuchi. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling[J]. Physica C, 2003, 386: 474-479.
  • 3Lin Y B, Lin L Z, Gao Z Y, et al. Development of HTS transmission power cable[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2371-2374.
  • 4Funaki K. Development of 500kVA-calss oxide superconducting power transformer operated at liquid-nitrogen temperature[J]. Cryogenics, 1998, 38(2): 211-220.
  • 5Schwenterly S W, McConnel B W, Demko J A, et al. Performance ofa 1MVAHTS demonstrationtransformer[J]. IEEE Transactions on Applied Superconductivity, 1999, 9(2): 680-684.
  • 6Zueger H. 630kVA high temperature superconducting transformer [J]. Cryogenics, 1998, 38(11): 1169-1172.
  • 7Hatta H, Nitta T, Oide T, et al. Experimental study on characteristics of superconducting fault current limiters connected in series [J]. Supercond. Sci. Technol., 2004, 17(5): S276-280.
  • 8Elschner S, Bruer F, Noe M, et al. Manufacture and testing of MCP2212 Bifilar coils for a 10MVA fault current limiter[J]. IEEE Transactions on Applied Superconductivity, 2006, 13(2): 1980-1983.
  • 9Paul N Barnes, Michael D Sumption, Gregory L Rhoads. Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings[J]. Cryogenics, 2005, 45(10-11): 670-686.
  • 10Luongo C A, Baldwin T, Ribeiro P, et al. A 100MJ SMES demonstration at FSU-CAPS[J]. IEEE Transactions on Applied Superconductivity, 2003, 2(13): 1800-1805.

同被引文献202

引证文献20

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部