期刊文献+

On the A-extended Lie Rinehart Algebras 被引量:1

A-扩张Lie Rinehart代数(英文)
下载PDF
导出
摘要 The purpose of this paper is to give a brief introduction to the category of Lie Rinehart algebras and introduces the concept of smooth manifolds associated with a unitary, commutative, associative algebra A. It especially shows that the A-extended algebra as well as the action algebra can be realized as the space of A-left invariant vector fields on a Lie group, analogous to the well known relationship of Lie algebras and Lie groups.
作者 陈酌 祁玉海
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期317-327,共11页 数学季刊(英文版)
基金 the China Postdoctoral Science Foundation(20060400017)
关键词 Lie Rinehart algebra A-extended algebra action algebra Lie group Lie algebra 李代数 A-扩张 Lie Rinehart代数 李群
  • 相关文献

参考文献24

  • 1C M de BARROS.Espaces Infinitésimaux[M].Paris:L'univ de Paris,Cahiers Topol Géom Diff,1965.
  • 2C M de BARROS.Opérateurs infinitésimaux sur l'algèbre des forms différentielles extérieures[J].Acad Sci Paris,1965,261:4594-4597.
  • 3BKOUCHE R.Strucutures (K,A)-linéaires[J].Acad Sci Paris,1966,262(A):373-376.
  • 4CANNAS A SILVA,WEINSTEIN A.Geometric Models for Noncommutative Algebras[M].Calif:Providence R I,1999.
  • 5GERSTENHABER M.SCHACK S D.Algebras,bialgebras,quantum groups and algebraic deformations.Deformation theory and quantum groups with applications to mathematical physics[J].Amer Math Soc,Providence,1992,134:51-92.
  • 6HIGGINS P J,MACKENZIE K.Algebraic constructions in the category of Lie algebroids[J].J Algebra,1990,129:194-230.
  • 7HIGGINS P J,MACKENZIE K.Duality for base-changing morphisms of vector bundles,modules,Lie algebroids and Poisson bundles[J].Math Proc Cambridge Philos Soc,1993,114:471-488.
  • 8HUEBSCHMANN J.Poisson cohomology and quantization[J].J Reine Angew Math,1990,408:57-113.
  • 9HUEBSCHMANN J.Lie-Rinehart algebras,Gerstenhaber algebras and Batalin-Vilkovisky algebras[J].Annales de l'institut Fourier,1998,48(2):2425-440.
  • 10HUEBSCHMANN J.Duality for Lie-Rinehart algebras and the modular class[J].J Reine Angew Math,1999,510:103-159.

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部