期刊文献+

On the Error Estimate of Adini's Element for the Second Order Problems 被引量:1

二阶问题Adini元的误差估计(英文)
下载PDF
导出
摘要 The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.
出处 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第3期364-369,共6页 数学季刊(英文版)
基金 the Henan Natural Science Foundation(072300410320) the Henan Education Department Foundational Study Foundation(200510460311)
关键词 Adini's element ANISOTROPIC regularity assumption error estimate 二阶问题 Adini元 误差估计 规则假设
  • 相关文献

参考文献9

  • 1ADAMS R A.Sobolev Spaces[M].New York:Academic Press,1975.
  • 2APEL T M.Dobrowolski,Anisotropic interpolation with applications to the finite element method[J].Computing,1992,(147):277-293.
  • 3APEL T.Anisotropic Finite Element:Local Estimates and Approximations[M].Stuttgart:Teubner,1999.
  • 4BRENNER S C,SCOTT L R.The mathematical theory of finite element methods[M].New York:Springer-Verlag,1994.
  • 5CHEN Shao-chun,SHI Dong-yang,ZHAO Yong-cheng.Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes[J].IMA J Numer Anal,2004,24:77-95.
  • 6CHEN Shao-chun,ZHAO Yong-cheng,SHI Dong-yang.Anisotropic interpolations with application to non-conforming elements[J].Appl Numer Math,2004,49:135-152.
  • 7CIARLET P G.The Finite Element Method for Elliptic Problems[M].New York:North-Holland,Amsterdam,Oxford,1978.
  • 8ZENISEK A,VANMAELE M.The interpolation theorem for narrow quadrilateral isoparametric finite elements[J].Numer Math,1995,72:123-141.
  • 9ZENISEK A,VANMAELE M.Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements[J].J Comp Appl Math,1995,63:109-122.

同被引文献3

  • 1Du Q. Studies of Ginzburg-Landau model for d-wave superconductors[J]. SIAM J Appl Math, 1999, 59(4): 1225-1250.
  • 2Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. North-Hoolland: Amsterdam, 1978: 7-8, 82-87, 104, 110-121.
  • 3Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York: Springer (third edition), 2008: 23-39.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部