On the Error Estimate of Adini's Element for the Second Order Problems
被引量:1
二阶问题Adini元的误差估计(英文)
摘要
The main aim of this paper is to have an accurate analysis on the famous Adini's element for the second order problems under to the anisotropic meshes. We firstly show that the interpolation of Adini's element satisfy the anisotropic property. Then the optimal error estimate is obtained without the regularity assumption on the meshes.
基金
the Henan Natural Science Foundation(072300410320)
the Henan Education Department Foundational Study Foundation(200510460311)
参考文献9
-
1ADAMS R A.Sobolev Spaces[M].New York:Academic Press,1975.
-
2APEL T M.Dobrowolski,Anisotropic interpolation with applications to the finite element method[J].Computing,1992,(147):277-293.
-
3APEL T.Anisotropic Finite Element:Local Estimates and Approximations[M].Stuttgart:Teubner,1999.
-
4BRENNER S C,SCOTT L R.The mathematical theory of finite element methods[M].New York:Springer-Verlag,1994.
-
5CHEN Shao-chun,SHI Dong-yang,ZHAO Yong-cheng.Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes[J].IMA J Numer Anal,2004,24:77-95.
-
6CHEN Shao-chun,ZHAO Yong-cheng,SHI Dong-yang.Anisotropic interpolations with application to non-conforming elements[J].Appl Numer Math,2004,49:135-152.
-
7CIARLET P G.The Finite Element Method for Elliptic Problems[M].New York:North-Holland,Amsterdam,Oxford,1978.
-
8ZENISEK A,VANMAELE M.The interpolation theorem for narrow quadrilateral isoparametric finite elements[J].Numer Math,1995,72:123-141.
-
9ZENISEK A,VANMAELE M.Applicability of the Bramble-Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements[J].J Comp Appl Math,1995,63:109-122.
同被引文献3
-
1Du Q. Studies of Ginzburg-Landau model for d-wave superconductors[J]. SIAM J Appl Math, 1999, 59(4): 1225-1250.
-
2Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. North-Hoolland: Amsterdam, 1978: 7-8, 82-87, 104, 110-121.
-
3Brenner S C, Scott L R. The Mathematical Theory of Finite Element Methods[M]. New York: Springer (third edition), 2008: 23-39.
-
1马秀芬,石东伟.二阶双曲方程的各向异性Adini元的高精度分析[J].济源职业技术学院学报,2007,6(1):21-24.
-
2孙会霞,王正辉.一个新十二参矩形板元的构造及收敛性分析[J].商丘师范学院学报,2014,30(6):17-20.
-
3石钟慈,陈千勇.一个高精度矩形板元[J].中国科学(A辑),2000,30(6):504-515. 被引量:6
-
4陈仲英.解双调和问题的基于Adini元的广义差分法[J].中山大学学报(自然科学版),1993,32(1):21-29.
-
5石东洋,陈绍春.求解Stokes问题的一类新混合元格式[J].应用数学,2001,14(S1):46-48.
-
6江金生,程晓良.二阶问题的一个类Wilson非协调元[J].计算数学,1992,14(3):274-278. 被引量:41
-
7张杰华,韩明华.Bi-wave方程的各向异性Adini元的高精度分析(英文)[J].甘肃联合大学学报(自然科学版),2009,23(6):9-14.
-
8张桂.一类空间分解问题[J].湖南大学学报(自然科学版),1996,23(5):15-19.
-
9宋士仓,陈绍春.一个各向异性插值定理及其在二阶问题混合元中的应用[J].高等学校计算数学学报,2004,26(3):230-240. 被引量:5
-
10乔保民,梁洪亮.一类非线性广义神经传播方程Adini元的超收敛分析[J].山东大学学报(理学版),2011,46(8):42-46. 被引量:3