A Mini Max Theorem for the Functionals with Hemicontinuous Gteaux Derivative and the Solution of the Boundary Value Problem for the Nonlinear Wave Equation
一个具有半连续Gteaux导数的泛函的Mini Max定理和非线性波动方程的边值问题的解(英文)
摘要
In this paper, a mini max theorem was showed mega which the paper proves a new existent and unique result on solution of the boundary value problem for the nonlinear wave equation by using the mini max theorem.
基金
the Natural Science Foundation of Southern Yangtze University China(0371)
二级参考文献10
-
1Stepan A Tersion. A Mini Max Theorem and Applications to Nonresonance Problems for Semilinear Equations. Nonlinear Analysis, TMA. 1986, 10(7): 651-668.
-
2Shen Z H. On the Periodic Solution to the Newtonian Equation of Motion. Nonlinear Analysis. TMA, 1989, 13(2): 145-149.
-
3Lazer A C, Landesman E M and Meyers D R. On a Saddle Point Problems in the Calculus of Variations. The Ritz Algorithm, and Monotone Convergence, J. Math. Analysis Applic ,1975, 52: 594-614.
-
4Manasevich R F. A Min Max Theorem. J Math Analysis Applic , 1982, 90: 64-71.
-
5Mawhin J. Solutions Pgriodiques D6quations aux Derives Partielles Hyperboliques Nonlineares,pp. 301-315, Melanges Th Vogel, Presses Univ de Bruxelles (1978).
-
6Raul F. Manasevich. A Non Variational Version of Max-Min Principle. Nonlinear Analysis.TMA, 1983, 7(6): 565-570.
-
7Ahmad S. An Existence Theorem for Periodically Perturbed Conservative Systems. Michigan Math J, 1973, 20: 385-392.
-
8Brown K J and Lin S S. Periodically Perturbed Conservative Systems and a Global Inverse Function Theorem. Nonlinear Anal TMA , 1980, 4:193-201.
-
9Lazer A C. Application of a Lemma on Bilinear Forms to a Problem in Nonlinear Oscillations.Proc Amer Math Soc , 1972, 33: 89-94.
-
10Peter W. Bates and Alfonso Castro, Existence and Uniqueness for a Variational Hyperbolic System without Resonance. Nonlinear Analysis. TMA, 1980, 4(6): 1151-1156.
-
1黄文华,陆川.一个具有半连续Gteaux导数的泛函的minimax定理和非线性波方程的解(英文)[J].南京大学学报(数学半年刊),2006,23(2):263-270.
-
2周盛凡.ATTRACTOR AND DIMENSION FOR STRONGLY DAMPED NONLINEAR WAVE EQUATION[J].Acta Mathematicae Applicatae Sinica,2000,16(3):266-273.
-
3黄文华,沈祖和.一个Mini Max定理和一类二阶Hamilton系统的解的唯一性5[J].纯粹数学与应用数学,2007,23(4):480-486. 被引量:1
-
4WANG Yan Ping.The Existence and Non-Existence of Global Solutions for a Nonlinear Wave Equation[J].Journal of Mathematical Research and Exposition,2009,29(1):164-168.
-
5张再云,黄建华,孙明保.ALMOST CONSERVATION LAWS AND GLOBAL ROUGH SOLUTIONS OF THE DEFOCUSING NONLINEAR WAVE EQUATION ON R^2[J].Acta Mathematica Scientia,2017,37(2):385-394.
-
6李康弟.Farkas引理及其应用[J].上海电力学院学报,2012,28(2):193-197. 被引量:1
-
7SONG Zhi-hua.Energy Decay of Solution to a Nonlinear Wave Equation of Kirchhoff Type[J].Chinese Quarterly Journal of Mathematics,2013,28(4):485-491.
-
8Huabing Jia,Enrang Yan(Dept. of Math.,Baoji University of Arts and Sciences,Baoji 721013,Shaanxi).EXACT SOLUTIONS TO NONLINEAR WAVE EQUATION[J].Annals of Differential Equations,2011,27(1):13-18.
-
9化存才,刘延柱.Bifurcation,Bi—instability and Area Principle for the Solitary Waves of the Nonlinear Wave Equation with Quartic Polynomial Potential[J].Chinese Physics Letters,2002,19(7):885-888. 被引量:3
-
10Xuemei DENG,Wei XIANG.Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation[J].Chinese Annals of Mathematics,Series B,2011,32(5):643-668.