期刊文献+

基于QPSO-LMK的自相似性网络流量预测

Prediction of self-similar traffic based on QPSO-LMK
下载PDF
导出
摘要 现在对高性能、高效性流量测量的研究表明网络流量呈现统计上的自相似性。因此,网络预测在网络管理中占据重要地位。使用QPSO(quantum-behaved particle swarm optimization)对预测自相似性网络流量的最小均值峰度(LMK)方法进行优化,能够获得较小的信噪比SNR-1(signal to noise ratio)。通过对真实网络流量的仿真实验,表明该方法能比LMK(最小均值峰度)算法更精确的预测网络流量。 Recent studies of high quality, high resolution traffic measurements have revealed that network traffic appears to be statistically self-similar. Thus, traffic prediction plays an important role in network management. Least mean kurtosis (LMK) based on QPSO, which can obtain signal error ratio less than LMK, is proposed to predict the self similar traffic. The simulation results with the real traffic traces show the accuracy efficiency of the model.
出处 《计算机工程与设计》 CSCD 北大核心 2007年第18期4401-4402,4406,共3页 Computer Engineering and Design
基金 国防预研基金项目(A1420061266)。
关键词 自相似性 最小均值峰度 QPSO算法 流量预测 信噪比 self-similar LMK QPSO algorithm traffic prediction signal to noise ratio
  • 相关文献

参考文献8

  • 1Park K,Willinger W.Self-similar network traffic:An overview,self-similar network traffic and performance evaluation[C].New York:Wiley-Interscience,2000:1-39.
  • 2Tuan T,Park K.Multiple time scale congestion control for self-similar network traffic[J].Performance Evaluation,1999,36/37:359-386.
  • 3Mikio Hasegawa,Gang Wu,Mitsuhiko Mizuno,et al.Applications of nonlinear prediction methods to the internet traffic[J].Proceedings-IEEE International Symposium on Circuits and Systems,2001:169-172.
  • 4Zhao H,Ansari N,Shi YQ.Self-similar traffic prediction using least mean kurtosis[J].Las Vegas,Nevada:Proc IEEE International Conference Information Technology:Coding and Computing (ITCC'2003),2003:352-355.
  • 5Sun J,Xu W B.A global search strategy of quantum-behaved particle swarm optimization[C].Proceeding of IEEE Conference on Cybernetics and Intelligent,2004:111-116.
  • 6Zhao Hong,Nirwan ANSARI,Yun Q SHI.Network traffic prediction using least mean kurtosis[J].IEICE Transactions on Communications,2006,E89-B(5):1672-1674.
  • 7Ostring S,Sirisena H.The influence of long range dependence on traffic prediction[C].Proc ICC,2001.
  • 8李士宁,闫焱,覃征.基于FARIMA模型的网络流量预测[J].计算机工程与应用,2006,42(29):148-150. 被引量:23

二级参考文献2

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部