期刊文献+

模幂与点乘m_ary算法中窗口大小的最优化估计 被引量:2

On estimation of optimal window size in m_ary algorithm in modular exponentiation and point multiplication
下载PDF
导出
摘要 提出一种新大数模幂与点乘m_ary算法中窗口大小的最优化估计方法。该方法不同于传统的暴力搜寻方法,也不同于在窗口的取值范围内通过逐一测试程序来获得最优窗口大小的方法。其基于以下理论分析:模幂m_ary算法的基本运算为大数乘法,其中包括大数平方算法和一般大数乘法;椭圆曲线加密算法中点乘的m_ary算法步骤与模幂的m_ary算法相同,后者的基本运算为倍乘和加法。根据m_ary算法的基本运算的调用次数,推算出了最优窗口大小的估计公式。通过实验对m_ary算法进行实现,并测试分析了根据估计公式计算出窗口大小的算法实现时间效率与理论分析基本吻合。 This paper proposed a new method for estimating optimal window size in m_ary algorithm in modular exponential and point multiplication. This method was different from traditional brute force search, and also different from the method that got the optimal window size by testing program one by one in window size range. The method this paper discussed was based following theoretic analysis : Square and multiplication of large integer are two basic operations in modular exponential m_ary algorithm. The main operations of m_ary algorithm of point multiplication in elliptic curve encryption were doublings and point addition . The steps of m_ary algorithm in point multiplication was similar to modular exponential. According to the times of basic operation was called, calculated estimating formula of optimal window size. Besides, experimental results show that im- plementation efficiency of m_ary using window size calculated by estimating formula is corresponding to theoretic analysis.
出处 《计算机应用研究》 CSCD 北大核心 2007年第10期35-36,40,共3页 Application Research of Computers
基金 国家自然科学基金资助项目(60373109)
关键词 大数模幂 点乘 m_ary算法 窗口大小 large integer modular exponentiation point multiplication m_ary algorithm window size
  • 相关文献

参考文献5

  • 1STINSON D R.Cryptography theory and practice[M].冯登国,译.北京:电子工业出版社,2003:131-132.
  • 2TANDRUP M B,JENSEN M H,ANDERSEN R N.Fast exponentiation in practice[EB/OL].[2006-06-10].http:www.daimi.au.dk/-ivan/FastExpproject.pdf.
  • 3陈艳波,唐四云,王学理.大数快速模幂算法的研究[J].科学技术与工程,2006,6(5):625-627. 被引量:1
  • 4MALONE-LEE J,SMART N P.Elliptic curve crypto-graphy[EB/OL].(2004).[2006-06-10].http://www.cs.bris.ac.uk/Teaching/Resources/COMSM2004/Lectures/Adv_Crypto_ECC.pdf.
  • 5宋燕红,田伏荣,张继永.大数模幂乘快速算法研究[J].北京电子科技学院学报,2001,9(1):22-27. 被引量:1

二级参考文献3

  • 1陈运.一种组合RSA算法[J].电子科技大学学报,1996,25(2):116-119. 被引量:9
  • 2[3]Chneier B.应用密码学:协议、算法与C源程序.北京:机械工业出版社,2000
  • 3[5]Kou D,Chang C.An adaptive exponentiation method,The Journal of Systems and Software,1998:42:59-69

同被引文献18

  • 1陈兴波,王晓明.一种快速RSA算法的改进[J].计算机工程与设计,2006,27(22):4243-4244. 被引量:4
  • 2Fujisawa Y, Fuwa Y, Yamazaki Y. High speed LSI processing for the RSA cryptogram [C]. IEEE International Conference on Communication, 2002,2196-2200.
  • 3Rujisawa Y, Fuwa Y. Definitions of Fadix-2^k Signed-Digit Number and its Adder Algorithm [J]. JOURNAL OF FORMALIZED MATHEMATICS, 1999,11: 9-10.
  • 4Fuwa Y, Rujisawa Y. High-Speed Algorithms for RSA Cryptograms [J]. JOURNAL OF FORMALIZED MATHEMATICS, 2000,12: 25-26.
  • 5Alfred J Menezes.应用密码学手册[M].北京:电子工业出版社,2005.
  • 6Knuth D E. The Art of Computer Programming:Semi-numerical Algorithms[M].New Jersey,USA:Addison-Wesley,1981.
  • 7Menezes A J,Van Oorschot P C,Vanstone S A. Handbook of Applied Cryptography[M].CRC Press,1996.
  • 8Koc C K. Analysis of Sliding Window Techniques for Expo-nentiation[J].Computers & Mathematics with Appli-cations,1995,(10):17-24.
  • 9Park H,Park K,Cho Y. Analysis of the Variable Length Non-zero Window Method for Exponentiation[J].Computers &Mathematics with Applications,1999,(07):21-29.
  • 10Downey P,Leong B,Sethi R. Computing Sequences with Addition Chains[J].SIAM Journal on Computing,1981,(03):638-646.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部