期刊文献+

基于预备工作集的最小序列优化算法

SMO algorithm based on reserve working set strategy
下载PDF
导出
摘要 为了提高支持向量机求解大规模问题的训练速度,提出了一种新的工作集选择策略——预备工作集策略:在SMO中,利用可行方向策略提取最大违反对的同时,从核缓存cache中提取违反KKT条件程度最大的一系列样本组成预备工作集,为此后历次SMO迭代优化提供工作集。该方法提高了核缓存的命中率,减少了工作集选择的代价。理论分析和实验结果表明,预备工作集策略能够很好地胜任待优化的工作集,加快了支持向量机求解大规模问题的训练速度。 In order to improve the training speed for large-scale problem, proposed a new strategy for the working set selection in SMO algorithm based on the tradeoff between the cost on working set selection and cache performance. This new strategy selected several maximal violating samples from cache as the reserve working set which would provide iterative working sets for the next several optimizing steps. The new strategy could improve the efficiency of the kernel cache and reduce the computational cost related to the working set selection. The results of theories and experiments demonstrate that the proposed method can reduce the training time, especially for large datasets.
出处 《计算机应用研究》 CSCD 北大核心 2007年第10期37-40,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60574083)
关键词 支持向量机 预备工作集 工作集选择 核缓存 support vector machine(SVM) reserve working set(RWS) working set selection kernel cache
  • 相关文献

参考文献10

  • 1VAPNIK V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995:35-54.
  • 2PLATT J.Fast training of support vector machines using sequential minimal optimization[C]//SCH(O)LKOPF B,BURGES C,SMOLA A.Advances in Kernel Methods-Support Vector Learning.Cambridge,MA:MIT Press,1999:185-208.
  • 3JOACHIMS T.Text categorization with support vector machines:learning with many relevant features[C]//Proc of the 10th European Conference on Machine Learning.Chemnitz,DE:[s.n.],1998:137-142.
  • 4CHANG C C,LIN C J.Libsvm:a library for support vector machines (version2.3)[EB/OL].(2001).http://www.csie.ntu.edu.tw/-cjlin/papers/libsvm.pdf.
  • 5JOACHIMS T.Making large-scale SVM learning practical[C]//SCH(O)LKOPF B,BURGRS C,SMOLA A.Advances in Kernel Methods-Support Vector Learning.Cambridge,MA:MIT Press,1998:169-184.
  • 6FLAKE G,LAWRENCE S.Efficient SVM regression training with SMO[J].Machine Learning,2002,46(1/3):271-290.
  • 7LI Jian-min,ZHANG Bo,LIN Fu-zong.A new strategy for selecting working sets applied in SMO[C]//Proc of the 16th International Conference on Pattern Recognition (ICPR 2002).[S.l.]:IEEE,2002:427-430.
  • 8李建民,张钹,林福宗.序贯最小优化的改进算法[J].软件学报,2003,14(5):918-924. 被引量:30
  • 9ZENG Zhi-qiang,GAO Ji.A new working set selection for SMO-type decomposition methods[C]//Proc of the 4th International Conference on Machine Learning and Cybernetics.Guangzhou:IEEE,2005:18-21.
  • 10FAN Rong-en,CHEN PH,LIN C J.Working set selection using second order information for training support vector machines[J].Journal of Machine Learning Research,2005,6:1889-1918.

二级参考文献9

  • 1Burges C.Atutorial on suovort vector machines for pattern recognition.Data Mining and Knowledge Discovery,1998,2(2):1-43.
  • 2Collobert R,Bengio S.SVMTorch:A support vector machine for large-scale regression and classification problems.Journal of Machine Learning Research,2001,1:143-160.
  • 3Platt J.Fast training of support vector machines using sequential minimal optimization.In:Schoelkopf B,Burges C,Smola A,eds.Advances in Kernel Methods-Suppog Vector Learning.Cambridge,MA:MIT Press,1999.185~208.
  • 4Joaehims T.Making large-scale support vector machine learning practical.In:Schoelkopf B,Burges C,Smola A,eds.Advances in Kernel Methods- Support Vector Learning.Cambridge,MA:MIT Press,1999.169~184.
  • 5Platt J.Using analytic QP and sparseness to speed training of support vector machines.In:Kearns M,Solla S,Cohn D,eds. Advances in Neural Information Processing Systems 11.Cambridge,MA:MIT Press,1999.557~563.
  • 6Flake G,Lawrence S.Efficient SVM regression training with SMO.Machine Learning,2002,46(1/3):271~290.
  • 7Keerthi S,Shevade S,Bhattcharyya C,Murthy K.Improvements to Platt’s SMO algorithm for SVM classifier design.Neural Computation,2001,13(3):637-649.
  • 8Keerthi S,Gilbert E.Convergence of a generalized SMO algorithm for SVM classifier design.Machine Learning,2002,46(1/3):351-360.
  • 9Lin CJ.On the convergence of the decomposition method for support vector machines.IEEE Transactions on Neural Networks,2001,12(6):1288-1298.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部