期刊文献+

基于粒度与小波变换的纹理图像分割 被引量:3

Texture image segmentation based on granularity and wavelets transform
下载PDF
导出
摘要 对小波变换本质进行分析,得出小波是将序列收敛的商空间逼近改造成按级数收敛的商空间逼近的结论。将商空间粒度计算理论与小波变换相结合并应用于纹理图像分割中,取得了成功。 After analyzing and summing up the wavelet theory, the conclusion was educed that wavelet and quotient space theory was accordant in essence according to the quotient space approach theory. The wavelet transform and granularity technique being combined, a segmentation algorithm in texture image was presented, and the algorithm was verified by experimental results.
作者 刘仁金
出处 《计算机应用研究》 CSCD 北大核心 2007年第10期155-157,160,共4页 Application Research of Computers
基金 国家自然科学青年基金资助项目(30300088)
关键词 小波变换 商空间 图像分割 wavelets transform quotient space image segmentation
  • 相关文献

参考文献5

二级参考文献32

  • 1Salari E, Ling Z, Texture segmentation using hierarchical wavelet decomposition [J]. Pattern Recognition, 1995, 28(12): 1819-1824.
  • 2Dinstein I, Fong A C. Fast Discrimination between Homo-Geneous and Texture Regions[C]. Proceedings, 7th Int.Conf Pattern Recognition, 1984. 361-365.
  • 3Manjunath B S, Simchony T, Chellappa R. Stochastic and Deterministic Networksfor Texture Segmentation[J]. IEEE Transactions on Acoustic, Speech, and Signal Processing. 1990,38(6): 1039-1049.
  • 4Fure-Ching Jeng, Woods J W, Rastogi S. Compound Gauss-Markov RandomFields for Parallel Image Processing [M]. Markov Random Fields Theory and Application, Academic Press, 1993.
  • 5Manjunath B S, Chellappa R. Unsupervised texture segmentation using Markov random fields models[J]. IEEE PAMI, 1991, 13(5): 478-482.
  • 6Lu C S, Chung P C, Chen C F. Unsupervised texture segmentation via wavelet transform [J]. Pattern Recognition, 1997,30(5): 729-742.
  • 7Rioul O, Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine, Oct. 1991, 8: 14-38.
  • 8Mallat S G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. PAMI, July 1989, 11(7): 674-693.
  • 9Dragotti P L, Vetterli M. Wavelet footprints: Theory, algorithms, and applications. IEEE Trans. Signal Processing,May 2003, 51(5): 1306-1323.
  • 10Beam R M, Warming R F. Multiresolution analysis and supercompact multiwavelets. SIAM J. Science Computation,2000, 22(4): 1238-1268.

共引文献58

同被引文献20

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部