期刊文献+

基于近邻可视的图像浏览方式研究

Research of image browsing algorithm based on nearest neighbor visualization
下载PDF
导出
摘要 针对图像搜索引擎的结果,对图像集依据视觉相似度将视觉相近的图像组织在一起,提供给用户一个有效的浏览接口。为降低计算时间,提出一种基于关键维的近邻搜索算法。实验证明了以上算法的有效性。 This paper explored the problem of analysis Web image search results and organized the image set based on visual similarity. The new improved nearest neighbor search algorithm presented based on key dimension, which could be used to improve the performance of compute efficiency. Experimental results show the validity of algorithms.
出处 《计算机应用研究》 CSCD 北大核心 2007年第10期200-202,共3页 Application Research of Computers
基金 湖南省自然科学基金资助项目(05FJ3018 03JJY3100)
关键词 图像检索 结果浏览 最近邻 关键维 image retrieval result browsing nearest neighbor key dimension
  • 相关文献

参考文献13

  • 1Google image search[EB/OL].[2006].http://images.google.cn/.
  • 2Alta vista image search[EB/OL].[2006].http://www.altavista.com/image.
  • 3RODDEN K,BASALAJ W,SINCLAIR D,et al.Does organisation by similarity assist image browsing[C]//Proc of the SIGCHI Conference on Human Factors in Computing System.New York:ACM Press,2001.
  • 4李爱国,汪社教.信息检索可视化[J].现代图书情报技术,2004(2):50-52. 被引量:9
  • 5CAI Deng,HE Xiao-fei,LI Zhi-wei,et al.Hierarchical clustering of WWW search results using visual,textual and link information[C]//Proc of the 12th Annual ACM International Conference on Multime-dia.New York:ACM Press,2004:952-959.
  • 6LI Zhi-wei,XU Gu,LI Ming-jing.Grouping WWW image search results by novel inhomogeneous clustering method[C]//Proc of the 7th Int Multimedia Modeling Conference.[S.l.]:IEEE,2005.
  • 7SUNAYAMA W,AKIKO,YACHIDA M.Image clustering system on WWW using Web texts[C]//Proc of the 4th Int Conf on Hybrid Intelligent Systems.Washington,DC:IEEE Computer Society,2004.
  • 8MUKHERJEA S,HIRATA K,HARA Y.Using clustering and visualization for refining the results of a WWW image search engine[C]//Proc of Workshop on New Paradigms in Information Visualization and Manipulation.New York:ACM Press,2000.
  • 9DESELAERS T,KEYSERS D,NEY H.Clustering visually similar images to improve image search engines[C]//Informatiktage der Gesellschaft für Informatik.Bad Schussenried,Germany:[s.n.],2003.
  • 10LIU Hao,XIE Xing,TANG Xiao-ou,et al.Effective browsing of Web image search results[C]//Proc of the 6th Int Conf on Multimedia Information Retrieval.New York:ACM Press,2004.

二级参考文献24

  • 1[1]Guttman A. R-Trees: A dynamic index structure for spatial searching. In: Yormark B, ed. Proc. of the ACM SIGMOD Conf. Boston,1984. 47~57.
  • 2[2]Berkmann N, Krigel HP. Schneider R, Seeger B. The R*-tree: An efficient and robust access method for points and rectangles. In Hector GM, Jagadish HV, eds. Proc. of the ACM SIGMOD Conf. Atlantic, 1990. 322~331.
  • 3[3]Katayama N, Satoh S. The SR-tree: An index structure for high-dimensional nearest neighbor queries. In: Peckham J, ed. Proc. of the ACM SIGMOD Conf. Tucson, 1997. 369~380.
  • 4[4]White DA, Jain R. Similarity indexing with the SS-tree. In: Stanley YWS, ed. Proc. of the 12th Int'l Conf. on Data Engineering New Orleans: IEEE Computer Society, 1996. 516~523.
  • 5[5]Lin K-I, Jagadish HV, Faloutsos C. The TV-tree: An index structure for high-dimensional data. VLDB Journal, 1994,3(4):517~542.
  • 6[6]Ciaceia P, Patella M, Zezula P. M-tree: An efficient access method for similarity search in metric spaces. In: Jarke M, Carey MJ,Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA, eds. Proc. of the 23rd VLDB Conf. Athens: Morgan Kaufmann Publishers, 1997.426~435.
  • 7[7]Bozkaya T, Ozsoyoglu M. Distance-Based indexing for high-dimensional metric spaces. In: Peckham J, ed. Proc. of the ACM SIGMOD Conf. on Management of Data Tucson, 1997. 357~368.
  • 8[8]Ishikawa M, Chen H, Furuse K, Yu JX, Ohbo N. MB+tree: A dynamically updatable metric index for similarity search. In: Lu HJ,Zhou AY, eds. Proc. of the 1st Int'l Conf. on Web Age Information Management Lecture Notes in Computer Science 1846,Springer-Verlag, 2000. 356~373.
  • 9[9]Jr CT, Traina A, Seeger B, Faloutsos C. Slim-Trees: High performance metric trees minimizing overlap between nodes. In: Zaniolo C, Lockemann PC, Scholl MH, Grust T, eds. Proc. of the 7th Int'l Conf. on Extended Database Technology. Lecture Notes in Computer Science 1777, Konstanz: Springer-Verlag, 2000. 51~65.
  • 10[10]Zhou XM, Wang GR, Yu G. A research of index methods in metric space. Computer Science, 2002,29(B):265~267 (in Chinese with English abstract).

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部