期刊文献+

一种半离散的非线性图像增强方法 被引量:3

Semi-discrete nonlinear algorithm for image enhancement
下载PDF
导出
摘要 提出了一种半离散的非线性扩散方法。借助SIDEs不连续右端的基本思想,将整个框架在弹簧体模型下进行考虑,给出了一些好的性质,并对该扩散方法提出了两种数值求解方案:显式方案和可加算子分裂(AOS)的迭代格式。在显式方案中,通过一个特殊的矩阵分解能大大减少滤波过程的运算量;在AOS方案中,对时间步长没有限制,从而可以选择较大的时间步长,提高了运算效率。实验表明,该扩散进程既有很好的平滑效果,又能增强图像边缘,且运算时间较短。 A semi-discrete nonlinear algorithm is proposed. Fottowlng Dy the laea of discontinuous righthand sides in SIDEs, the whole framework is studied based on the spring-mass model, and some good properties are given. Furthermore, two schemes are presented: explicit scheme and additive operator splitting (AOS) scheme. In explicit scheme, a matrix with symmetry and vanishing row sums is proved to have a special decomposition, which can reduce the complexity during the diffusion process. In AOS scheme, the time step can be set very large to improve the model's time efficiency. Experimental results show that better smoothing is obtained and image edge is enhanced well.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2007年第9期1559-1563,共5页 Systems Engineering and Electronics
关键词 半离散 强迫函数 弹簧体模型 semi-discrete force function spring-mass model
  • 相关文献

参考文献8

  • 1Perona P,Malik J.Scale-space and edge detection using anisotropic diffusion[J].IEEE Trans.PAMI,1990,12 (7):629-639.
  • 2Catte F,Lions P L,Morel J M,et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM J.Num.Anal.,1992,29(1):182-193.
  • 3Weickert J,Benhamouda B.A semidiscrete nonlinear scale-space theory and its relation to the Perona-Malik paradox[J].Advances in Computer Vision,Springer,Wien,1997:1-10.
  • 4Pollak I,Willsky A S,Krim H.Scale-space analysis by stabilized inverse diffusion equations[C] // Proc.1st Int.Conf.Scale-Space Theory in Computer Vision,Utrecht,The Netherlands,1997:200-211.
  • 5Pollak I,Willsky A S,Krim H.Image segmentation and edge enhancement with stabilized inverse diffusion equations[J].IEEE Trans.on Image Processing,2000,9(2):256-266.
  • 6Pollak I.Segmentation and restoration via nonlinear multiscale filtering[J].IEEE Signal Processing,2002,19 (5):26-36.
  • 7Weickert J,ter Haar Romeny B M,Viergever M A.Efficient and reliable schemes for nonlinear diffusion filtering[J].IEEE Trans.on Image Processing,1998,7(3):398 -410.
  • 8Weickert J.Anisotropic diffusion in image processing[M].Teubner-Verlag,Stuttgart,Germany,1998:67-72.

同被引文献32

  • 1袁晓,张红雨,虞厥邦.分数导数与数字微分器设计[J].电子学报,2004,32(10):1658-1665. 被引量:47
  • 2杨维,余斌霄,宋国乡.基于变分问题和广义软阈值的图像去噪[J].系统工程与电子技术,2005,27(11):1855-1857. 被引量:5
  • 3吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法[J].电子学报,2006,34(1):163-166. 被引量:34
  • 4姜东焕,徐光宝,宋国乡.基于小波和变分泛函的图像分解[J].系统工程与电子技术,2007,29(6):848-851. 被引量:1
  • 5Chan T, Kang S H, Shen J. Euler's elastica and curvature based inpainting[J]. SIAM Journal on Applied Mathematics ,2002,63 (2):564-592.
  • 6Bai J, Feng X C. Fractional-order anisotropic diffusion for image denoising [J]. IEEE Trans. on Image Processing, 2007, 16 (10):2492 - 2502.
  • 7Hahn J, Tai X C, Borok S, et al. Orientation-matching minimization for image denoising and inpainting[J]. International Journal of Computer Vision ,2011,92(3) :308 - 324.
  • 8Hamidi A, Menard M, Lugiez M, et al. Weighted and extended total variation for image restoration and decomposition[J].Pattern Recognition ,2010,43(4):1564 - 1576.
  • 9Bertalmio M, Sapiro G, Caselles V, et al. Image inpainting[C]// Proc. of the ACM SIGGRAPH ,2000:417 - 424.
  • 10Chan T, Shen J. Mathematical models of loeal non-texture inpaintings [J].SIAM Journal on Applied Mathematics, 2002,62(3) : 1019 - 1043.

引证文献3

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部