期刊文献+

广义节点无网格法基本原理及其应用

Fundamentals and application of generalized-node-based meshfree method
下载PDF
导出
摘要 借鉴流形方法思想,引入广义节点的概念,对传统的无网格法进行了改进,建立了可具有任意高阶多项式插值函数的广义节点无网格方法,在阐述这种方法基本原理的同时,针对线弹性力学问题给出了其计算列式.与传统无网格方法相比,这种方法更具有一般性,当选取0阶广义节点位移插值函数时便可得到传统的无网格法;可以通过提高广义节点位移插值函数的阶数降低完备基函数的次数,从而可减少支持域内节点的数目并保证计算精度.最后通过一端承受剪力悬臂梁和中间开口无穷板算例分析,论证了这种方法的合理性. A new type of meshfree method is developed by incorporating the generalized node which originated from manifold method with the conventional meshfree method. The proposed method is termed as the generalized-node-based meshfree method. The fundamental theory together with numerical formulations is presented. When the zero-order displacement interpolation function of the generalized node is chosen, the proposed method will be reduced to the conventional meshfree method. And if higher-order displacement interpolation function is utilized, the highest order of complete basis functions can be reduced. Nevertheless, it does not affect the computational accuracy. As numerical examples, a cantilever beam under end shear and an infinite plate with a hole are respectively analyzed by the proposed method and it is shown that the numerical results computed are in good agreement with the theoretical solutions.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2007年第5期712-717,共6页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(10172022) 教育部跨世纪优秀人才培养计划研究基金资助项目(教技函[1998]2号)
关键词 无网格法 广义节点 广义节点无网格法 meshfree method generalized node generalized-node-based meshfree method
  • 相关文献

参考文献10

  • 1GINGOLD R A,MONAGHAN J J.Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J].Monthly Notices of the Royal Astronomical Soc,1977,181:375-389.
  • 2NAYROLES B,TOUZOT G,VILLON P.Generalizing the finite element method:diffuse approximation and diffuse elements[J].Comput Mech,1992,10:307-318.
  • 3BELYTSCHKO T,LU Y Y,GU L.Element free Galerkin methods[J].Int J Numer Meth in Eng,1994,37:229-256.
  • 4LIU W K,JUN S,ZHANG Y F.Reproducing kernel particle methods[J].Int J Numer Meth in Fluids,1995,20:1081-1106.
  • 5SUKUMAR N,MORAN B,BELYTSCHKO T.The nature element method in solid mechanics[J].Int J Numer Meth in Eng,1998,43:839-887.
  • 6LIU G R,GU Y T.A point interpolation method for two dimensional solids[J].Int J Numer Meth in Eng,2001,50:937-951.
  • 7石根华.数值流形方法与非连续变形[M].裴觉民,译.北京:清华大学出版社,1997.
  • 8梁国平,何江衡.广义有限元方法──一类新的逼近空间[J].力学进展,1995,25(4):562-565. 被引量:22
  • 9栾茂田,田荣,杨庆.广义节点有限元法[J].计算力学学报,2000,17(2):192-200. 被引量:21
  • 10邵国建,刘体锋.广义有限元及其应用[J].河海大学学报(自然科学版),2002,30(4):28-31. 被引量:8

二级参考文献13

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部