摘要
针对非线性离散时变系统的迭代学习控制问题,提出了一种改进的迭代学习控制算法。在新控制算法中,除了在传统算法基础上增加了状态补偿外,还引用了小波变换来对跟踪误差进行了滤波而没有相位补偿。利用该算法进行学习控制,使系统的实际输出以更快的速度收敛于系统的理想输出;并进一步从理论上证明了新算法的收敛性。
Aimed at the problem of iterative learning control for nonlinear discrete time-variant system, the improved iterative learning control algorithm is given. The new learning control rule not only incorporates a state compensation in the conventional ILC formula, but also adopts the wavelet transform to filter learnable tracking errors without phase shift. The actual output trajectory of the system achieves fast convergence to the desired trajectory by using the iterative learning control algorithm. Then, the convergence of the new algorithm is proved.
出处
《科学技术与工程》
2007年第22期5776-5780,共5页
Science Technology and Engineering
关键词
离散系统
迭代学习控制
学习律
收敛性
discrete system herative learning control learning law astringency