期刊文献+

一种基于组合核函数支持向量机的水下目标小波特征提取与识别方法 被引量:4

Hybrid Kernel Function Support Vector Machine Based Method for the Extraction and Recognition of Wavelet Feature of Underwater Targets
下载PDF
导出
摘要 准确的模式识别要求提取出的特征尽可能反映分类本质的特征.本文利用同态分析理论对水下声信号进行预处理,从最终接收到经过噪声干扰的目标信号中复原出能反映目标传输特性的原始信号,并在此基础上对信号进行离散小波变换,提取小波变换系数在不同区间上的尺度—过零密度、尺度—平均幅度特征,最终利用组合核函数支持向量机对提取出的特征进行分类识别.实验表明,提取出的特征能反映目标类别特点,该方法能对水下目标进行有效的识别. Precisely pattern recognition require that the extracted feature should reflect the essential character of classification as far as possible, In this paper, the underwater acoustic signal is preprocessed according to the theory of homomorphic analysis, the original signal which reflects the target' s transport character therefore can be reconstructed among the interfered noise signal. Based on this step, discrete wavelet transform is performed to extract features such as scale-zero cross density in multi interval and scale-magnitude from the transformed coefficients, Then a hybrid kernel function support vector machine is designed to recognize different targets. Experiments show that this method can achieve good performance in the underwater target recognition field.
出处 《小型微型计算机系统》 CSCD 北大核心 2007年第10期1891-1897,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金(60273066 60473116)资助.
关键词 小波变换 过零率 平均幅度 支持向量机 水下目标识别 wavelet transform zero cross rate average magnitude support vector machine underwater target recognition
  • 相关文献

参考文献13

  • 1Waite A D.Sonar for practicing engineers (Third Edition)[M].Beijing:Publishing House of Electronics Industry,2004.
  • 2Zhang Run-zhong,Tang Zong-yu.Oceanic acoustics computation[Z].No.715 Institute of China Shipbuliding Industry Corporation,2000.
  • 3朱进,章新华.被动声呐目标识别技术的现状与展望[J].舰船科学技术,2003,25(5):55-58. 被引量:12
  • 4Tu Feng,Huang Rui-guang.Modeling and simulation study of water channel[J].Information of Micro Computer,2003,19(5):76-77.
  • 5Zielinski A,Yoon Y H,Wu Li-xue.Performance analysis of digital acoustic communication in a shallow water channel[J].IEEE Journal of Oceanic Engineering,1995,20(4):293-299.
  • 6Hermansky H,Morgan N.RASTA processing of speech[J].IEEE Transaction on Speech and Audio Processing,1996,2(4):578-589.
  • 7Li Guo-hui,Khokhar A A.Content-based indexing and retrieval of audio data using wavelets[C].International Conference on Multimedia and Expo (ICME) 2000,885-888.
  • 8Vapnik V.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 9Tan Ying,Wang Jun.A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis dimension[J].IEEE Transactions on Knowledge and Data Engineering,2004,14(4):385-395.
  • 10Osuna E,Freund R,Girosi F.An improved training algorithm for support vector machine[C].In:IEEE Workshop on Neural Networks for Signal Processing,Amelea Island,FL:IEEE,1997,276-285.

二级参考文献25

  • 1陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 2章新华,林良骥,王骥程.目标识别中信息融合的准则和方法[J].软件学报,1997,8(4):303-307. 被引量:4
  • 3张贤达.现代信号处理[M].北京:清华大学出版社,1994.510-513.
  • 4章新华.遗传算法及应用.火力与指挥控制,1997,4(22):49-53.
  • 5林良骥.提取回声信号特征的过零点方法[J].水声通讯,1983,(3).
  • 6林良骥.波形峰间峰值的分布特性及其用于回声信号的识别[J].水声通讯,1983,(3):22-28.
  • 7章新华.被动声呐目标特性分析与分类识别技术研究.哈尔滨工程大学博士后研究工作报告[R].,1999.6.
  • 8Nii H Penny, Feigenbatun E, Anton J and Rockmore A. Signal - to-symbol transformation: HASP/SIAP case study. AI magazine. 1982: 23 -25.
  • 9Richardsan D.Seeing Electronically? Recognizing is better[J]. ARMADA International. 1998,22(3) :8 - 20.
  • 10Makaym J N , Banner A J , Dent C A & Hemphill G L . Machine analysis of acoustical signals, pattern tecognation, 1983,16(8) :615 - 625.

共引文献11

同被引文献30

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部