期刊文献+

应用哈密顿-雅可比方程计算电力系统稳定域 被引量:4

Determination of Power System Stability Region Using Hamilton-Jacobi Equation
下载PDF
导出
摘要 提出一种应用哈密顿-雅可比(Hamilton-Jacobi)偏微分方程求取电力系统稳定域的方法。该方法的主要思路是:在电力系统的状态空间预先设定一个小的稳定区域,将其作为目标集,逆时间求解目标集的可达集得到电力系统稳定域;目标集和可达集均由水平集函数描述,从而将可达集的计算转化为求解Hamilton-Jacobi方程的终值问题。该方法可以适应高阶模型、稳定域的非凸性,理论上可以求得精确的稳定域边界。通过单机无穷大电力系统的数值计算,验证了该方法的正确性和有效性。 This paper presents a method to compute power system stability region using Hamilton-Jacobi partial differential equation. The big idea is that, determinate a small stability region in advance in power system's state space as a target set, then compute the reachable set in backward time namely the stability region, the target set and the reachable set are both described by level set functions, thus computing the reachable set is converted into solving a terminal value problem of Hamilton-Jacobi equation. The method is adaptive to high-order models, nonconvex stability regions, and is able to calculate exactly stability boundary in theory. The correctness and effectiveness of the method is verified by numerical implementation for single machine and infinite bus systems.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第28期19-23,共5页 Proceedings of the CSEE
基金 国家自然科学基金项目(50337010)。~~
关键词 电力系统 哈密顿-雅可比方程 稳定域 水平集方法 可达集 power system Hamilton-Jacobi equation stability region level set methods reachable set
  • 相关文献

参考文献15

  • 1曾沅,余贻鑫.电力系统动态安全域的实用解法[J].中国电机工程学报,2003,23(5):24-28. 被引量:69
  • 2刘峰,辛焕海,甘德强,邱家驹,瞿志华.一个基于上界函数的暂态稳定域估计方法[J].中国电机工程学报,2005,25(5):15-20. 被引量:12
  • 3李颖晖,张保会,李勐.电力系统稳定边界的研究[J].中国电机工程学报,2002,22(3):72-77. 被引量:42
  • 4薛安成,梅生伟,卢强,吴复立.基于网络约化模型的电力系统动态安全域近似[J].电力系统自动化,2005,29(13):18-23. 被引量:25
  • 5Tomlin C J,Lygeros J,Sastry S.A game theoretic approach to controller design for hybrid systems[J].Proceedings of the IEEE,2000,88(7):949-970.
  • 6Tomlin C J,Mitchell I M,Bayen A M,et al.Computational techniques for the verification of hybrid systems[J].Proceedings of the IEEE,2003,91(7):986-1001.
  • 7Mitchell I M,Bayen A M,Tomlin C J.A time-dependent Hamiltion-Jacobi formulation of reachable sets for continuous dynamic games[J].IEEE Transactions of automatic control,2005,50(7):947-957.
  • 8Mitchell I M.Application of level set methods to control and reachability problems in continuous and hybrid systems[D].Stanford:Stanford University,2002.
  • 9Thomas A Henzinger,Pei-Hsin Ho,Howard Wong-Toi.Algorithmic analysis of nonlinear hybrid systems[J].IEEE Transactions on Automatic Control,1998,43(4):540-554.
  • 10Chutinan A,krogh B H.Computational techniques for hybrid system verification[J].IEEE Trans.Autom.Control,2003,48(1):64-75.

二级参考文献24

共引文献135

同被引文献29

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部