摘要
在应力—强度干涉模型中,当应力、强度均服从瑞利(Rayleigh)分布:R(x│β)={2βxexp[(-xβ2)],x00x<0,参数未知的情况下,讨论了在给定验前分布情况下的可靠性R=P(Y<X)的Bayes点估计及区间估计,结果表明置信水平为1-γ的Bayes估计是R∧=(1-r∧1-cr∧)和后验置信区间为[R(r2)<R<R(r1)]=[1-r∧21-cr∧2<R<1-r∧11-cr∧1].
In this paper,the Bayes point estimate and interval estimate olF reliability R=P(Y〈X) of stress-- strength model are discussed under a prior distribution of unknown parameter,where both the stress and thestrength are submitted to the Rayleigh distribution R(x|β)={2/βxexp[(-x^2/β)],x≥0/0 x〈0 The results show that Bayes estimator is ^R=(1-^r/1-^cr) and the interval is [R(r2)〈R〈R(r1)]=[1-^r2/1-^cr2〈R〈1-^r1/1-^cr2].
出处
《数学理论与应用》
2007年第3期17-20,共4页
Mathematical Theory and Applications