期刊文献+

一种DNA-NSGA-ⅡRBF网络非线性动态系统建模 被引量:4

DNA-NSGA-Ⅱ nonlinear dynamic system modeling approach using RBF neural networks
下载PDF
导出
摘要 基于DNA计算操作算子,提出了一种多目标非支配排序遗传算法,用于实现径向基函数(RBF)网络的优化设计。以RBF网络结构最简、拟合精度最高为优化指标,得到一组Pareto最优解,并根据测试数据的误差绝对值之和最小准则,从Pareto最优解集中筛选出最佳RBF网络。连续搅拌反应釜和pH中和过程建模仿真研究表明,该算法是一种有效的"黑箱"动态建模方法。 Based on the operators of DNA computing, a multi-objective non-dominated sorted genetic algorithm (DNA-NSGA-Ⅱ ) was proposed to optimize the radial basis function (RI3F) network. 13oth the structure complexity and the approximation performance were optimized. Once a group of Pareto optimal solutions were derived, the appropriate RBF network could be chosen in terms of the sum of absolute values of the testing errors. Simulation results of a continuous stirred tank reactor (CSTR) and pH neutralization process showed that the proposed method is an efficient black box dynamic modeling approach.
作者 陶吉利 王宁
出处 《化工学报》 EI CAS CSCD 北大核心 2007年第10期2530-2538,共9页 CIESC Journal
基金 国家创新研究群体科学基金项目(60421002)~~
关键词 DNA计算 非支配排序遗传算法 RBF网络 化工过程 DNA computing non-dominated sorted genetic algorithm radial basis function networks chemical process
  • 相关文献

参考文献20

  • 1王旭东,邵惠鹤.RBF神经网络理论及其在控制中的应用[J].信息与控制,1997,26(4):272-284. 被引量:178
  • 2朱明星,张德龙.RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),2000,24(1):72-78. 被引量:165
  • 3Maniezzo V,Informazzione D E.Genetic evolution of the topology and weight distribution of neural networks.IEEE Transactions on Neural Networks,1994,5 (1):39-53
  • 4Mao K Z.Algorithms for minimal model structure detection in nonlinear dynamic system identification.International Journal of Control,1997,68 (2):311-330
  • 5李艳君,吴铁军,赵明旺.一种新的RBF神经网络非线性动态系统建模方法[J].系统工程理论与实践,2001,21(3):64-69. 被引量:8
  • 6Sarimveis H,Alexandridis A,Mazarakis S,Bafas G.A new algorithm for developing dynamic radial basis function neural network models based on genetic algorithms.Computers & Chemical Engineering,2004,28 (1):209-217
  • 7Yan Pingfan (阎平凡),Zhang Changshui (张长水).Artificial Neural Networks and Simulation Evolutionary Computation (人工神经网络与模拟进化计算).2nd ed.Beijing:Tsinghua University Press,2005
  • 8Coello C A C,Van Veldhuizen D A,Lamont G B.Evolutionary Algorithms for Solving Multi-Objective Problems.Hingham,MA:Kluwer Academic Publishers,2002
  • 9Deb K,Pratap A,Agarwal S,Meyarivan T.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ.IEEE Transactions on Evolutionary Computation,2002,6 (2):182-197
  • 10Favuzza S,Ippolito M G,Sanseverino E R.Crowded comparison operators for constraints handling in NSGA-Ⅱ for optimal design of the compensation system in electrical distribution networks.Advanced Engineering Informatics,2006,20 (2):201-211

二级参考文献13

共引文献344

同被引文献46

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部