期刊文献+

The effects of relative density of metal foams on the stresses and deformation of beam under bending 被引量:1

The effects of relative density of metal foams on the stresses and deformation of beam under bending
下载PDF
导出
摘要 The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined. The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative density of the material on stresses and deformation are revealed with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for individual foams are discussed, showing the importance of compressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plasticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第4期409-414,共6页 力学学报(英文版)
关键词 Metal foams - Relative density Compressible plasticity Constitutive law - TG model Metal foams - Relative density Compressible plasticity Constitutive law - TG model
  • 相关文献

参考文献12

  • 1Gibson, L.J., Ashby, M.F.: Cellular Solids-Structure and Properties. Cambridge University Press, Cambridge (1997)
  • 2Gibson, L.J., Ashby, M.F., Zhang, J., Triantafillou, T.C.: Failure surfaces for cellular materials under multi-axial loads- (I) Modeling. Int. J. Mech. Sci. 31, 635-665 (1989)
  • 3Triantafillou, T.V., Gibson, L.J.: Constitutive modeling of elasticplastic open-cell foam. J. Eng. Mech. 116, 2772-2778 (1990)
  • 4Miller, R.: A continuum plasticity model for the constitutive and indentation behavior of foamed metals. Int. J. Mech. Sci. 42, 729-754 (2000)
  • 5Deshpande, V.S., Fleck, N.A.: Isotropic constitutive models for metallic foams. J. Mech. Phys. Solids 48, 1253-1283 (2000)
  • 6Deshpande, V.S., Fleck, N.A.: Collapse of truss core sandwich beams in 3-point bending. Int. J. Solids Structure 49, 6275- 6305 (2001)
  • 7Ashby, M.A., Evans, A.G., Fleck, N.A., Gibson, L.J., Hutchinson, J.W., Wadley, H.N.G.: Metal Foams: a Design Guide. Butterworth Heinemann, Oxford (2000)
  • 8Fan, T.Y., Mai, Y.M., Guo, R.P., Maier, M., Liu, G.T.: Continuum constitutive models and analytic solutions of crack problems of cellular materials. J. Mater. Sci. Technol. 11, 86-105 (2003)
  • 9Guo, R.E, Mai, Y.W., Fan, T.Y., Liu, G.T., Maier, M.: Plane stress crack growing steadily in metal foams. Mater. Sci. Eng. A 381, 292-298 (2004)
  • 10Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, Oxford (1950)

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部