期刊文献+

改进粒子群算法在治疗型关节炎护膝中的应用 被引量:3

Application of improved particle swarm optimization to the kneepad used for curing osteoarthritis
下载PDF
导出
摘要 为保证治疗型关节炎护膝中升压电路的优良性能,必须对其中的电路参数进行优化。本文采用一种改进的粒子群算法对升压电路中控制强度的参数进行优化,保证平稳的升压性能。同时为了保证粒子群在搜索过程中目标函数的可计算,采用神经网络对升压电路进行建模,通过实验数据对神经网络进行训练并测试。最后分别在粒子群优化后的参数与原有参数下,对升压电路性能进行比较,验证了该算法所确定的参数可以保证升压过程更平稳,电路具有更好的性能。 In order to insure good performance of the voltage boosting circuit in the kneepad used for curing osteoarthritis, the circuit parameters should be optimized. An improved particle swarm optimization algorithm is used to optimize the circuit parameters that control the output strength. At the same time, in order to insure the calculability of the objective function in the searching process of the particle swarm, neural network is used to model the voltage boosting circuit. The neural network is trained and tested using the experimental data. Finally the performances of the voltage boosting circuits with both optimized parameters and original parameters are tested and compared respectively. The test result proves that the voltage boosting circuit with optimized parameters using the proposed algorithm can insure smoother voltage boosting, and possesses better performance.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第9期1619-1623,共5页 Chinese Journal of Scientific Instrument
基金 福建省卫生厅中医药重点项目(WZZG0601) 福建省科技厅重点项目(2006I0017)资助
关键词 骨性关节炎 粒子群算法 神经网络 osteoarthritis particle swarm optimization neural network
  • 相关文献

参考文献8

  • 1郑鹏,佟智慧,金日龙,王奇,史广强,董重,葛茂锁.膝关节骨性关节炎的治疗进展[J].中国骨质疏松杂志,2005,11(4):535-537. 被引量:6
  • 2丁青.针灸治疗膝关节骨性关节炎[J].实用医药杂志,2005,22(11):985-985. 被引量:13
  • 3王宇琳,杜民,刘献祥.治疗型膝骨性关节炎护膝的研制[J].生物医学工程研究,2006,25(2):105-108. 被引量:3
  • 4SEO J H,IM C H,HEO C G,et al.Multimodal function optimization based on particle swarm optimization[J].IEEE Transactions on Magnetics,2006,42(4):1095-1098.
  • 5MOSTANBIM S,TEICH J.Strategies for finding local guides in multiobjeetive particle swarm(MOPSO)[C].Proceeding of the IEEE Swarm Intelligence Optimization Symposium,Indianapolis,2003:26-33.
  • 6LEE K Y,El-SHARKAWl M A.Modern heuristic opumization techniques with applications to power systems[J].IEEE Power Engineering Society,2002.45-51.
  • 7李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 8KENNEDY J,EBERHART R.Swarm Intelligence[M].San Mateo,CA:Morgan Kaufmann,2001.

二级参考文献47

  • 1郑鹏,佟智慧,金日龙,王奇,史广强,董重,葛茂锁.膝关节骨性关节炎的治疗进展[J].中国骨质疏松杂志,2005,11(4):535-537. 被引量:6
  • 2韩济生.1/4世纪的求索[J].生理科学进展,1992,23(2):102-102.
  • 3童诗白,华成英.模拟电子技术基础.北京:高等教育出版社,2000.
  • 4Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 6Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 7Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 8Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 9Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 10Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.

共引文献416

同被引文献78

引证文献3

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部