期刊文献+

多运动状态下的移动机器人故障诊断方法 被引量:4

Fault detection and diagnosis of mobile robots in multi-movement states
下载PDF
导出
摘要 本文提出了一种处理不同运动状态下移动机器人故障的诊断方法。该方法将移动机器人的运动状态分为5种:静止状态、直线运动状态、3种不同的转动状态。在不同的运动状态下,考虑不同模式的故障(左轮编码器故障、右轮编码器故障和陀螺仪故障等)。利用卡尔曼滤波器组,处理每一种运动状态下不同模式的故障发生的概率。最后,根据故障发生的概率值判断故障模式发生的可能性。与其他故障诊断方法相比,文中的故障诊断方法有效改善了误诊和漏诊现象。仿真结果表明在轮式移动机器人故障诊断上的可行性。 A new method is introduced to detect and diagnose the faults of mobile robots in different movement states. The movement states of mobile robot include static state, rectilinear movement state, and three kinds of turning states. Several modes of faults are discussed in the corresponding movement states. Then a bank of Kalman filters are used to process the mode probability of each fault mode occurred under different movement states. According to the values of mode probability, we can estimate which mode of faults may occur. Compared with other fault detection and diagnosis methods, the method proposed in this paper improves the capability of avoiding missed diagnosis and misdiagnosis. This proposed method has been implemented on a mobile robot and the simulation results show the effectiveness of the method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第9期1660-1667,共8页 Chinese Journal of Scientific Instrument
基金 国防科技预研基金(00J16.6.6.3.JW040)资助项目
关键词 移动机器人 故障诊断 卡尔曼滤波 多运动状态 故障模式 mobile robot fault detection and diagnosis Kalman filter multi-movement states fault mode
  • 相关文献

参考文献12

  • 1MURPHY R R,HERSHBERGER D.Handling sensing failures in autonomous mobile robots[J].The International Journal of Robotics Research,1999,18(4):382-400.
  • 2CARLSON J,MIRPHY R.Reliability analysis of mobile robots[C].Proceeding of the IEEE International eonference on Robotics and Automation,2003.
  • 3FRANK P M.Dynamic model based incipient fault detection concept for robots[C].Proceeding of 11th IFAC World Congress,1990,3:76-81.
  • 4MURPHY R R.Introduction to AI robots[M].The MIT Press,2000.
  • 5VERRMA V,GORDON G,SIMMONS R,et al.Realtime fault diagnosis robot fault diagnosis[J].IEEE Robotics & Automation Magazine,2004,11(2):56-66.
  • 6KUNIAKI K,SHINNOSUKE O.A study of self-diagnosis for an autonomous mobile robot:coping with self-eondition using internal sensory information[C].The 27th Annual Conference of the IEEE Industrial Electronics Society,2001:381-386.
  • 7VERMA V,SIMMONS R.Scalable robot fault detection and identification[J].Robotics and Autonomous Systems,2006,54:184-191.
  • 8DEARDEN R,CLANCY D.Particle filters tor real-time fault detection in planetary rovers[C].Proceedings of the thirteenth international workshop on principles of diagnosis,Semmefing,Austria,2002:16.
  • 9VERMA V,THRUN S,SIMMONS R.Variable resolution particle filter[C].International Joint Conference of Artificial Intelligence,2003.
  • 10段琢华,蔡自兴,于金霞,邹小兵.基于粒子滤波器的移动机器人惯导传感器故障诊断[J].中南大学学报(自然科学版),2005,36(4):642-647. 被引量:5

二级参考文献12

  • 1Roumeliotis S I, Sukhatme G S, Bekey G A. Sensor fault detection and identification in a mobile robot[A].IEEE/RSJ Int'l Conf on Intelligent Robots and Systems[C]. Victoria, 1998.
  • 2Goel P, Dedeoglu G, Roumeliotis S I, et al. Fault detection and identification in a mobile robot using multiple model estimation and neural network[A]. IEEE Int'l Conf on Robotics & Automation[C]. San Francisco, 2000.
  • 3Hashimoto M, Kawashima H, Nakagami T, et al.Sensor fault detection and identification in dead-reckoning system of mobile robot: interacting multiple model approach[A]. Int'l Conf on Intelligent Robots and Systems[C]. Hawaii, 2001.
  • 4Verma V, Gordon G, Simmons R, et al. Real-time fault diagnosis (robot fault diagnosis)[J]. IEEE Roboties & Automation Magazine, 2004, 11 (2): 56-66.
  • 5Verma V, Langford J, Simmons R. Non-parametric fault identification for space rovers[A]. International Symposium on Artificial Intelligence and Robotics in Space[C]. Montreal, 2001.
  • 6Verma V, Gordon G, Simmons R. Efficient monitoring for planetary rovers[A]. International Symposium on Artificial Intelligence and Robotics in Space[C].Nara, 2003.
  • 7de Freitas N. Rao-blackwellised particle filtering for fault diagnosis[A]. Proceedings 2002 IEEE Aerospace Conference[C]. Big Sky, 2002.
  • 8Thrun S, Langford L, Verma V. Risksensitive particle filters[A]. Proceedings of the Neural Information Processing Systems Conference [C]. Vancouver,2002.
  • 9Verma V, Thrun T, Simmons R. Variable resolution particle filter[A]. Proceedings of the International Joint Conference on Artificial Intelligence[C]. Acapulco, 2003.
  • 10Cai Z X, Zou X B, Wang L, et al. A research on mobile robot navigation control in unknown environment: objectives, design and experiences[A]. Proceedings of Korea-Sino Symposium on Intelligent Systems[C]. Busan, 2004.

共引文献4

同被引文献40

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部