摘要
本文提出了一种处理不同运动状态下移动机器人故障的诊断方法。该方法将移动机器人的运动状态分为5种:静止状态、直线运动状态、3种不同的转动状态。在不同的运动状态下,考虑不同模式的故障(左轮编码器故障、右轮编码器故障和陀螺仪故障等)。利用卡尔曼滤波器组,处理每一种运动状态下不同模式的故障发生的概率。最后,根据故障发生的概率值判断故障模式发生的可能性。与其他故障诊断方法相比,文中的故障诊断方法有效改善了误诊和漏诊现象。仿真结果表明在轮式移动机器人故障诊断上的可行性。
A new method is introduced to detect and diagnose the faults of mobile robots in different movement states. The movement states of mobile robot include static state, rectilinear movement state, and three kinds of turning states. Several modes of faults are discussed in the corresponding movement states. Then a bank of Kalman filters are used to process the mode probability of each fault mode occurred under different movement states. According to the values of mode probability, we can estimate which mode of faults may occur. Compared with other fault detection and diagnosis methods, the method proposed in this paper improves the capability of avoiding missed diagnosis and misdiagnosis. This proposed method has been implemented on a mobile robot and the simulation results show the effectiveness of the method.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2007年第9期1660-1667,共8页
Chinese Journal of Scientific Instrument
基金
国防科技预研基金(00J16.6.6.3.JW040)资助项目
关键词
移动机器人
故障诊断
卡尔曼滤波
多运动状态
故障模式
mobile robot
fault detection and diagnosis
Kalman filter
multi-movement states
fault mode