期刊文献+

对爱因斯坦模型的修正及考虑热效应的三个通用状态方程(英文)

Modified Einstein Model to Consider Thermal Effect and Applied to Three Universal Equations of State
下载PDF
导出
摘要 对固体考虑热效应的爱因斯坦模型进行了修正。指出考虑热效应的通用状态方程中不应该包含零点振动项,方程参数不应该直接取为参考温度下的实验值VR、BR、B′R和γRG,而应该取为零温下的数值V0、B0、B′0和γ0G;提出了一种从VR、BR、B′R和γRG求解V0、B0、B′0和γ0G的方法。将提出的方法应用于三个典型的通用状态方程,包括Baonza、mMNH和Vinet方程。数值结果表明,利用相同的实验参数对三个方程解出的参数,以及预测的零压和低压下的热物理性质差异很小,而且都与实验数据符合很好。这些结果表明,在零压和低压下预测热物理性质的精确度不足以用来判断各种通用状态方程的适用性。 The Einstein model to consider thermal effect in universal equations of state (UEOS) is modified. It is proposed that the zero-point vibration term should be deleted in a thermal UEOS,and the parameters can not be directly taken as experimental data at a reference temperature,VR ,BR ,BR′ and γR^G, but their values at absolute zero temperature,V0 ,B0 ,B0′ and γ0^G. An approach is proposed to solve V0 ,B0 ,B0′ and γ0^G from VR, BR,BR′ and γR^G. The approaches are applied to three typical universal EOSs,including the Baonza, mMNH and Vinet EOSs. The numerical results show that the solved values of parameters are almost identical for different EOSs. And the thermo-physical properties predicted through different EOSs are almost identical at zero and low-pressure conditions,once the same approach and input experimental data are used to solve parameters. It is concluded that the prediction of thermo-physical properties at zero and low-pressure conditions cannot be taken as the criteria to judge the applicability of a universal EOS.
出处 《高压物理学报》 EI CAS CSCD 北大核心 2007年第3期269-278,共10页 Chinese Journal of High Pressure Physics
基金 Program of Sichuan Province of China under Grant(06ZQ026-010) Program of Education Minis-tration of China under Grant(NCET-05-0799) Program of UESTC under Grant(23601008)
关键词 状态方程 高压 热物理性质 热膨胀 equation-of-state high-pressure thermodynamic properties thermal expansions
  • 相关文献

参考文献20

  • 1Rose J H,Smith J R,Guinea F.Universal Features of the Equation of State of Metals[J].Phys Rev B,1984,29(6):2963-2969.
  • 2Vinet P,Smith J R,Ferrante J,et al.Temperature Effects on the Universal Equation of State of Solids[J].Phys Rev B,1987,35(4):1945-1953.
  • 3Dodson B.Universal Scaling Relations in Compressibility of Solids[J].Phys Rev B,1987,35(6):2619-2625.
  • 4Kumari M,Dass N.An Equation of State Applied to Sodium Chloride and Caesium Chloride at High Pressures and High Temperatures[J].J Phys:Condens Matter,1990,2(14):3219-3229.
  • 5Kuchhal P,Kumar R,Dass N.Equation of State of Liquid Metals from Sound-Velocity Measurements[J].Phys Rev B,1997,55(13):8042-8044.
  • 6Parsafar G,Mason E A.Universal Equation of State for Compressed Solids[J].Phys Rev B,1994,49(5):3049-3060.
  • 7Hama J,Suito K.The Search for a Universal Equation of State Correct up to Very High Pressures[J].J Phys:Condens Matter,1996,8(1):67-81.
  • 8Baonza V G,Caceres M,Nunez J.The Spinodal as a Reference Curve for the High-Pressure Volumetric Behavior of Liquids[J].Chem Phys Lett,1993,216(3-6):579-584.
  • 9Baonza V G,Caceres M,Nunez J.High-Pressure Compressibility Behavior of Liquids Referred to a Pseudospinodal Curve[J].Chem Phys Lett,1994,228(1-3):137-143.
  • 10Baonza V G,Caceres M,Nunez J.Experimental Measurement of Quasi-Fermi Levels at an Illuminated Semiconductor/Liquid Contact[J].J Phys Chem,1994,98(19):4955-4958.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部