期刊文献+

磨粒类型识别研究 被引量:5

Study on Recognition of Types of Wear Debris
下载PDF
导出
摘要 提出了一种有效的磨粒类型识别方法,该方法除了选用传统的磨粒形态特征参数,将表面粗糙度和表面纹理指数也作为重要的磨粒识别参数,选用面积、长度、圆度、纤维比率、体态比、边界分形维数、表面粗糙度Sa、Sq和表面纹理指数(Stdi)等9个参数,采用人工神经网络来识别磨粒类型,应用示例表明效果良好,提高了磨粒类型识别的精确度。 The recognition of types of wear debris is the key objective of wear debris analysis. An effective approach to recognize types of wear debris was proposed. In addition to conventional boundary morphology parameters of wear debris, surface roughness parameters and surface texture index were adopted as important parameters. Total 9 input parameters, area, length, roundness, fiber ratio, aspect ratio, boundary fractal dimension, surface roughness parameters ( Sa, and Sq ) and surface texture index (Stdi), were used to be as input parameters of BP neural network to recognize types of wear debris. The application example demonstrates that the developed method can be used to recognize types of wear debris precisely.
出处 《润滑与密封》 CAS CSCD 北大核心 2007年第3期21-23,46,共4页 Lubrication Engineering
基金 湖北省自然科学基金项目(2006ABA315)
关键词 磨粒 磨粒类型 识别 表面纹理 wear debris types of wear debris recognition surface texture
  • 相关文献

参考文献8

  • 1全书海.基于表面灰度图像的加工表面形貌分形特征研究[D].武汉:武汉理工大学,2002.
  • 2Yuan C Q,Peng Z,Yan X P.Wavelet surface characterisation using wavelet theory and confocal laser scanning microscopy[J].Journal of Tribology,ASME,2005,127(2):394-404.
  • 3Roylance B J,Albirdewi L A,Laghari M S,et al.Computer-aided vision engineering (CAVE):quantification of wear particle morphology[J].Lubrication Engineering,1994,50(2):111-116.
  • 4Thomas A D H,Davies T,Luxmoore A R.Computer image analysis identification of wear particles,Pattern Recognition for Binary Images[C].IEEE Colloquium on 7 Apr 1989,6:1-3.
  • 5Scanning Probe Image Processor (SPIP) software[M].Image Metrology ApS,Denmark,2000.
  • 6Yuan C Q,Li J,Yan X P,et al.The use of the fractal description to characterize engineering surfaces and wear particles[J].Wear,2003,255:315-326.
  • 7Roylance B J.Industrial Wear Particle Atlas[D].University of Wales,Swansea,UK,1997.
  • 8李忠,曾昭翔,陈大融.基于 BP 神经网络的磨损微粒智能识别[J].北方交通大学学报,1998,22(1):86-91. 被引量:8

二级参考文献6

  • 1李忠,武汉交通科技大学学报,1994年,8期,190页
  • 2胡守仁,神经网络应用技术,1993年
  • 3钟义信,智能理论与技术.人工智能与神经网络,1992年
  • 4焦李成,神经网络系统理论,1991年
  • 5陈克兴,设备故障诊断技术,1990年
  • 6李忠,1995年

共引文献10

同被引文献63

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部