期刊文献+

Fe-Cr合金钢高温性能研究 被引量:3

Research of Fe-Cr alloys properties at high temperature
下载PDF
导出
摘要 本文试验研制了四种Fe-Cr合金材料,其在900℃时的热膨胀率在10-11×10^-3范围内,其中Fe-Cr-4合金的热膨胀率为10.27×10^-3,与钇稳定氧化锆(YSZ)相比,热膨胀率逐渐接近;与传统合金材料相比,热膨胀率之差均有了明显下降,因而降低了界面热应力,有效改善层间的热失配现象.随着温度的升高,各合金试样的电阻率呈平缓增大的趋势.在850℃时,四种合金试样的电阻率在0.95-1.17×10^-3Ω·cm范围内,其中Fe-Cr-4试样的电阻率较低,为1.17×10^-3Ω·cm,满足用作SOFC连接体材料导电性能的要求.Fe-Cr-1、4两种合金试样的抗氧化性能较好,随着氧化时间的延长,试样表面形成稳定的3Cr2O3Fe2O3氧化层,氧化增重逐渐趋于稳定.累计氧化455 h后,Fe-Cr-1、4两种试样对应的氧化增重在0.0002 g/g左右;而Fe-Cr-2、3两种试样仍在0.0004 g/g以上. Four kinds of Fe - Cr ferric alloys were manufactured in this experiment. Their thermal expansion rates at 900℃ were between 10 - 11 × 10^-3 ( and the rate of sample Fe - Cr -4 was 10. 27 × 10^-3 ), which were close to yttrium stabled zirconium (YSZ). Compared with traditional alloy materials, the thermal expansion rate margins were decreasing obviously, resulting in the decrease of thermal stress and the improvement of thermal matching. The electrical resistance of the samples increased smoothly with the increase of temperature. The electrical resistance of these four samples was in the range of 0. 95 - 1.17 × 10^-3Ω·cm, and sample Fe - Cr -4 was 1.17× 10^-3Ω·cm. Sample Fe -Cr- 1 and Fe -Cr-4 showed better performance on oxidation resistance, for a 3Cr203Fe2O3oxidation coating was formed on the sample surface and the mass gain tended to be stable with the oxidation operation prolonged. After 455 oxidation hours added up, the mass gain of sample Fe - Cr - 1 and Fe- Cr-4 was approximately 0. 0002g/g, yet sample Fe- Cr-2 and Fe- Cr-3 above 0. 0004g/g.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2007年第4期534-536,共3页 Materials Science and Technology
基金 教育部重点项目(6087) 国家高技术发展计划资助项目(2006AA11A189)
关键词 膨胀率 高温电阻率 抗氧化性能 固体氧化物燃料电池 thermal expansion rate electrical resistance at high temperature oxidation resistance Solid ox- ide fuel cell
  • 相关文献

参考文献6

  • 1GARDNER F JGARDNER,DAY M J,et al.SOFC technology development at Rolls-Royce[J].Journal of Power Sources,2000,86:122-129.
  • 2彭苏萍,韩敏芳,杨翠柏,王玉倩.固体氧化物燃料电池[J].物理,2004,33(2):90-94. 被引量:31
  • 3HILPERT K,STEINBRECH R W,BOROOMAND F,et al.Defect formation and mechanical stability of perovskites based on LaCrO3 for solid oxide fuel cells(SOFC)[J].Journal of the European Ceramic Society,2003,23(16):3009-3020.
  • 4ZHU W.Z.,DEEVI SC.Development of interconnect materials for solid oxide fuel cells[J].Materials Science and Engineering A,2003,348(1-2):227-243.
  • 5MORI MASASHI,HIEI YOSHIKO.Thermal expansion behavior of titanium-doped La(Sr)CrO3 solid oxide fuel cell interconnects[J].Journal of the American Ceramic Society,2001,84(11):2573-2578.
  • 6HORITA TERUHISA,XIONG YUEPING,YAMnJI KATSUHIKO,et al.Evaluation of Fe-Cr alloys as interconnects for reduced operation temperature SOFCs[J].Journal of the Electrochemical Society,2003,150(3):A243-A248.

二级参考文献9

  • 1[1]Minh N Q, Takahashi T. Science and technology of ceramic fuel cells, Elsevier Science B V, ISBN:0-444-895668-X, U.S.A. 1995,11:5
  • 2[2]Minh N Q, Science and Technology of Zirconia(Ⅴ). In: Badwal S P S, Bannister M J, Hannink R H J eds. Lancaster, PA, USA:Technomic Publishing Company, 1993:652
  • 3[3]Isenberg A O. In: 1982 National Furl Cell Seminar Abstracts, November 14-18,1982, Newport Beach, CA, Courtesy Associates, Washington, DC, 1982, 154
  • 4[4]Eds. Berry D A, Mayfield M J. Fuel Cells-Technology Status Report, Report No.DOE/METC-89/0266,U. S.Department of Energy, Washington,DC,1988
  • 5[5]Westinghouse Electric Corporation. Solid Oxide Fuel Cell Power Generation System, The Status of the Cell Technology--A Topical Report, Report No. DOE/ET/17089-15, U. S.Department of Energy, Washington,DC,1988
  • 6[6]Westinghouse Electric Corporation.High Temperature Solid Oxide Electrolyte Fuel Cell Power Generation System, Quarterly Summary Report, July1, 1983-September 30,1983, Report No. DOE/ET/17089-1972, U. S.Department of Energy, Washington,DC,1985
  • 7[7]Veyo S E. In: 1988 Fuel Cell Seminar Abstracts, October 23-26,1988, Long Beach, CA, Courtesy Associates, Washington,DC,1988, 13
  • 8[8]Lundberg W L. Solid Oxide Fuel Cell Cogeneration System Conceptual Design, Report No. GRI-89/0162, Gas Research Institute, Chicago, 1989
  • 9[9]Minh N Q.J. Am. Ceram. Soc., 1993,76:563

共引文献30

同被引文献30

  • 1蔡凯洪,马莒生,张桂华,丁绍松,张晓义.表面粗糙度对FeNi42Cr6合金氧化封接性能的影响[J].功能材料,2004,35(z1):1704-1706. 被引量:2
  • 2贾光耀,郭志猛,王耀明,罗文辉,齐建美,胡利明.卫星电池用高性能氧化锆纤维布膜的研制[J].硅酸盐通报,2004,23(5):20-23. 被引量:13
  • 3方威,杨志刚.Fe—Ni42合金带材表面缺陷研究[J].金属材料研究,2007,33(1):20-23. 被引量:1
  • 4何开元.精密合金材料学.北京:冶金工业出版社,1990:164-201.
  • 5张冀华.功能材料及其应用.北京:机械工业出版社,2009:51-63.
  • 6Yichun Liu, Lei Liu, Zhong Wu, et al. Grain growth and grain size effects on the thermal expansion properties of an electrodeposited Fe Ni invar alloy, Scripta Materialia ( in press).
  • 7Kuan Yu Lin, Tsong Jen Yang, Wen Ta Tsai. Synthesis of Invar alloy powders by electroless plating. MateriaLs Science and Engineering, 2006, A 416 : 226 - 231.
  • 8C. Chanmuang, M. Naksata, T. Chairuangsri, et al. Microscopy and strength of borosilicate glass-to-Kovar alloy joints. Materials Science and Engineering, 2008, A 474 : 218 -224.
  • 9Fu Rui, Feng Di, Chen Xi-chun. Effects of undersized inclusions on ductile fracture behavior of FeNi42 alloy in sheet tension. Proceedings Symposium, 2007 : 53.
  • 10Dawei Luo, Zhuoshen Shen. Wetting and spreading behavior of borosilicate glass on Kovar. Journal of Alloys and Compounds, 2009,477 : 407- 413.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部