摘要
利用一个改进的L eggett-W illiam s不动点定理,在f,g满足一定增长条件的前提下,证明了一类二阶两点微分方程系统边值问题:三个正解的存在性.其中:f,g:[0,1]×[0,∞)×R→[0,∞)连续.
By the uses of an improved Leggett-Willlams fixed-point theorem, and imposes some growth conditions on f,g. The existence of three positive solutions of the BVP for systems of second-oder two-point ODE with the form{u″(t)+f(t,v(t),v′(t))=0,0〈t〈1;v″(t)+g(t,u(t),u′(t))=0,0〈t〈1;u(0)=u(1)=v(0)=v(1)=0, is studied. Here, f,g: [0, 1]× [0,∞) × R→[0,∞) is continuous.
出处
《数学的实践与认识》
CSCD
北大核心
2007年第19期183-187,共5页
Mathematics in Practice and Theory
基金
数学天元基金资助项目(10626033)
关键词
微分方程系统
不动点定理
锥
正解
systems of ODE
fixed-point theorem
cone
positive solution