期刊文献+

时间尺度上脉冲动力系统的实用稳定性 被引量:5

Practical Stability of Impulsive Dynamic System on Time Scales
原文传递
导出
摘要 对时间尺度上脉冲动力系统进行研究,利用Lyapunov类函数和比较原理,得到这类系统实用稳定性的充分条件. This paper investigates impulsive dynamic system on time scales, and obtains sufficient conditions of practical stability for such systems by using Lyapunov-like function and comparison principle.
出处 《数学的实践与认识》 CSCD 北大核心 2007年第19期208-212,共5页 Mathematics in Practice and Theory
关键词 实用稳定性 脉冲动力系统 时间尺度 practical stability impulsive dynamic system time scales
  • 相关文献

参考文献7

  • 1Lakshmikantham V, Bainov D D, Simeonov P P. Theory of Impulsive Differential Equations [M]. Singapore: World Scientific, 1989.
  • 2Lakshmikantham V, Sivasundaram S, Kaymakcalan B. Dynamic Systems on Measure Chains [M]. Dordrecht: Kluwer Academic Publishers,1996.
  • 3Lakshmikantham V, Martynyuk A A. Hybrid systems on time scales[J]. J Comput Appl Math,2002,141:227- 235.
  • 4Akinyele O, Adeyeye J O. Cone-valued Lyapunov functions and stability of hybrid systems [J]. Dynamics of Continuous, Discrete and Impulsive Systems, Ser A, 2001, 8:203-214.
  • 5Wang P G, Liu X. Practical stability of impulsive hybrid differential systems in terms of two measures on time scales [J]. Nonlinear Analysis, TMA, 2006,65 (11):2035-2042.
  • 6Wang P G, Liu X. New comparison principle and stability criteria for impulsive hybrid systems on time scales[J]. Nonlinear Analysis: Real World Applications, 2006,7 (5): 1096-1103.
  • 7Wang P G, Lian H R. Stability in terms of two measures impulsive integro-differential equations via variation of the Lyapunov method [J]. Appl Math Comput, 2006,177 (2) : 387-395.

同被引文献26

  • 1刘俊.一类非线性微分方程的周期解[J].曲靖师范学院学报,2004,23(6):35-37. 被引量:1
  • 2徐道义,颜祥伟.非线性微分方程部分变元的有界性[J].四川师范大学学报(自然科学版),1996,19(2):26-32. 被引量:3
  • 3周英告.一类Gronwall-Bellman型不等式的统一证明及其推广[J].大学数学,2006,22(5):31-35. 被引量:7
  • 4张瑜,孙继涛.EVENTUAL STABILITY OF IMPULSIVE DIFFERENTIAL SYSTEMS[J].Acta Mathematica Scientia,2007,27(2):373-380. 被引量:2
  • 5Wang P G,Liu X.Practical stability of impulsive hybrid differential systems in terms of two measures on time scales[J].Nonlinear Analysis,2006,65 (11):2035-2042.
  • 6Burton T A.Stability by Fixed Point Theory for Functional Differential Equations[M].Mineola,New York:Dover Publications,2006.
  • 7Burton T A.Integral equations,large and small forcing functions:Periodicity[J].Math Comput Model,2007,45 (11):1363-1375.
  • 8O' Regan D,Cho Y J,Chen Y Q.Topological Degree Theory and Applications[M].Boca Raton,London,New York:Chapman and Hall/CRC,2006.
  • 9Lakshmikantham V,Leela S,Martynyuk A A.Practical Stability of Nonlinear Systems[M].Singapore,New Jersey,London,Hong Kong:World Scientific Publishing,1990.
  • 10Lakshmikantham V,Sivasundaram S,Kaymakcalan B.Dynamic systems on mcasure chains[M].DordrechtL:Kluwer Academic Publishers,1996.

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部