Julia集为Cantor集的有理映射的刚性
摘要
证明了如果两个Julia集为Cantor集的有理映射是拓扑共轭的,那它们一定是拟共形共轭的.
出处
《中国科学(A辑)》
CSCD
北大核心
2007年第10期1167-1180,共14页
Science in China(Series A)
基金
国家自然科学基金(批准号:10671178)资助项目
参考文献19
-
1Graczyk J, Swiatek G. Generic hyperbolicity in the logistic family. Ann Math, 146:1-52 (1997)
-
2Lyubich M. Dynamics of quadratic polynomials, Ⅰ-Ⅱ. Act Math, 178: 185-247, 247-297 (1997)
-
3McMullen C. Complex Dynamics and Renormalization. Ann Math Stud, No 135. Princeton: Princeton University Press, 1994
-
4Hubbard J H. Local connectivity of Julia sets and bifurcation loci: three theorems of J C Yoccoz. In: Goldberg L R, Phillps A V, eds. Topological Methods in Modern Mathematics. Houston, TX: Publish or Perish, Inc, 1993. 467-511
-
5Yoccoz J C. On the local connectivity of the Mandelbrot set. Unpublished work
-
6Graczyk J, Smirnov S. Non-uniform hyperbolicity in complex dynamics Ⅰ, Ⅱ. Prepublication d'Orsay, 2001, 36
-
7Przytycki F, Rohde S. Rigidity of holomorphic Collet-Eckmann repellers. Ark Math, 37:357-371 (1999)
-
8Haissinsky P. Rigidity and expansion for rational maps. J Lond Math, 63:128-140 (2001)
-
9Kozlovski O, Shen W X, van Strien S. Rigidity for real polynomials. Ann Math, In press
-
10Lyubich M, Minsky Y. Laminations in holomorphic dynamics. J Differ Geom, 47:17-94 (1997)
-
1图片[J].现代物理知识,2009(2).
-
2刘喜玲.拓扑空间中的拓扑共轭在迭代中的运用[J].河南科技学院学报,2007,35(1):68-69.
-
3张鹏.渐变映射[J].计算机光盘软件与应用(COMPUTER ARTS数码艺术),2005(4):92-95.
-
4谢洁,金渝光.拓扑空间中ω-极限集的几个性质[J].重庆工商大学学报(自然科学版),2014,31(5):19-21.
-
5通过图画感知内心[J].快乐语文,2015,0(6):36-36.
-
6王勇.让水波倒影在图片中荡漾[J].网友世界,2008(13):36-36.
-
7任蕴丽,卢占会,樊丽丽,吕金凤,何尚琴.连续自映射的拓扑r-熵及其性质[J].华北电力大学学报(自然科学版),2009,36(4):110-112. 被引量:2
-
8立体方阵[J].数学大世界(上旬),2016,0(10):18-18.
-
9酷图欣赏[J].天天爱学习(二年级),2017,0(11):28-29.
-
10陈仁芬.多媒体在小学低年级数学教学中的辅助作用[J].中国教育技术装备,2011(28):116-117.