H^k流的微分Harnack估计
摘要
对k>0,得到了在R^(n+1)中的H^k流的解的微分Harnack估计.应用这个估计,得到了关于H^k-流迁移孤立子的一些性质.
出处
《中国科学(A辑)》
CSCD
北大核心
2007年第10期1207-1214,共8页
Science in China(Series A)
二级参考文献18
-
1Cao, H. D. & Chow, B., Recent developments on the Ricci flow, Bull. Amer. Math. Soc., 36(1999),59-74.
-
2Cheeger, J. & Ebin, D., Comparison theorems in Riemannian geometry, North-Holland Publishing Company, Amsterdan, 1975.
-
3Ecker, K. & Huisken,G., Interior estimates for hypersurfaces moving by mean curvature, Invent, Math.,105(1991), 547-569.
-
4Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17(1982), 255-306.
-
5Hamilton, R. S., Four-manifolds with positive curvature operator, J. Differential Geom., 24(1986), 153-179.
-
6Hamilton,R. S., The Harnack estimate for the Ricci flow, J. Differential Geom., 37(1993), 225-243.
-
7Hamilton, R. S., Formation of singularities in the Ricci flow, Surveys in Differential Geom., 2(1995),7-136, International Press, Boston.
-
8Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41(1995), 215-226.
-
9Hamilton, R. S., A compactness property for solutions of the Ricci flow, Amer. J. Math., 117(1995),545-572.
-
10Hamilton, R. S., Four manifolds with positive isotropic curvature, Comm. Anal. Geom., 5(1997), 1-92.
-
1王建红.黎曼流形上薛定谔方程的Harnack估计[J].数学学报(中文版),2011,54(6):993-1008.
-
2王建红.Ricci流下薛定谔方程的Harnack估计[J].华东师范大学学报(自然科学版),2012(4):36-42.
-
3朱晓睿.一类紧致Khler流形上的Harnack估计[J].数学年刊(A辑),2011,32(6):745-752.
-
4方守文.延拓的Ricci流下具有位能的热方程的Harnack估计[J].扬州大学学报(自然科学版),2013,16(2):13-15. 被引量:1
-
5牛艳艳,倪磊,李庆忠.流形上的微分Harnack估计[J].中国科学:数学,2013,43(5):423-429. 被引量:1
-
6阮其华,陈志华.带权流形上热方程的Harnack估计[J].数学年刊(A辑),2008,29(2):203-208.
-
7吴佳贤,黄琴.非紧流形上抛物方程的椭圆型梯度估计[J].漳州师范学院学报(自然科学版),2010,23(4):6-12.