期刊文献+

控制与本质非线性问题 被引量:2

Problems in Control and Intrinsic Nonlinearities
下载PDF
导出
摘要 回顾了控制理论的发展,并讨论了线性系统、单平衡位置系统的本质特征.重点介绍了多平衡点非线性系统的本质非线性特征,复杂多彩的动态特性,包括自振、混沌、同宿轨、异宿轨,特别是讨论了高阶系统的复杂性.进一步讨论了控制介入到本质非线性系统后可能的发展前景与挑战. This paper reviews the development of control theory and the characteristics of linear systems and systems with unique equilibrium. Intrinsic nonlinear characteristics and complex dynamical behaviors are discussed for nonlinear systems with multiple equilibria, including self-oscillation, chaos, homoclinic orbit and heteroclinic orbit, especially for higher order systems. Further, challenges and opportunities are discussed when control is involved with intrinsic nonlinear characteristics.
出处 《自动化学报》 EI CSCD 北大核心 2007年第10期1009-1013,共5页 Acta Automatica Sinica
基金 国家自然科学基金(60334030 10472001 60404007)资助~~
关键词 本质非线性 多平衡点 总体性质 Intrinsic nonlinearity, multiple equilibria, global properties
  • 相关文献

参考文献10

  • 1Leonov G A,Ponomarenko V,Smirnova V B.Frequency Domain Methods for Nonlinear Analysis.Singapore:World Scientific,1996
  • 2Leonov G A,Burkin I M,Shepeljavyi A L.Frequency Methods in Oscillation Theory.Dordrecht:Kluwer Academic Publishers,1992
  • 3Lorenz E N.Deterministic nonperiodic flows.Journal of the Atmospheric Sciences,1963,20(2):130-141
  • 4Madan R.Chua's Circuit:A Paradigm for Chaos.Singapore:World Scientific,1993
  • 5Stewart I.The Lorenz attractor exists.Nature,2000,406(6799):948-949
  • 6Curra P F,Chua L O.Absolute stability theory and synchronization problem.International Journal of Bifurcation and Chaos,1997,7(6):1375-1383
  • 7黄琳,杨莹,耿志勇,王金枝,段志生.系统动态性能的多样性分析与控制——后绝对稳定性研究[J].控制理论与应用,2004,21(6):966-974. 被引量:2
  • 8Duan Z S,Wang J Z,Huang L.Input and output coupled nonlinear systems.IEEE Transactions on Circuits and Systems-I,2005,52(3):567-575
  • 9Yang Y,Duan Z S,Huang L.Design of nonlinear inter connections guaranteeing the absence of periodic solutions.Systems and Control Letters,2006,55(4):338-346
  • 10周培源.努力把基础理论搞上去:谈谈自然科学和基础理论的几个认识问题.北京:科学普及出版社,1997.11

二级参考文献13

  • 1LUR'E A I,POSTNIKOV V N.On the theory of stability of control systems [J]. Prikladnaya Matematika Mehkhanika, 1994,8(3):246-248.
  • 2POPOV V.Absolute stability of non-linear systems of automatic control [J]. Automation and Remote Control, 1962,22(8):857-875.
  • 3YAKUBOVICH V A.A solution of some matrix inequalities which appear in the automatic control theory [J]. Doklady Akademii Nauk SSSR, 1962,143(6):1304-1307.
  • 4KALMAN R E.Lyapunov functions for the problem of Lur'e in automatic control [J]. Proceedings of the National Academy of Sciences, 1963,49(2):201-205.
  • 5CHUA L O,GREEN D N.A qualitative analysis of the behavior of dynamic nonlinear networks: stability of autonomous networks [J]. IEEE Trans on Circuits and Systems I-Fundamental Theory and Applications, 1976,23(6):355-379.
  • 6CHEN G,DONG X. From Chaos to Order:Methodologies,Perspectives and Applications [M].Singapore:World Scientific,1998.
  • 7RANTZER A.On the Kalman-Yakubovich-Popov lemma [J]. Systems & Control Letters, 1996,28(1):7-10.
  • 8LEONOV G A,PONOMARENKO D V,SMIRNOVA V B. Frequency-Domain Methods for Nonlinear Analysis [M].Singapore:World Scientific,1996.
  • 9YANG Y,HUANG L.H ∞ controller synthesis for pendulum-like systems[J]. Systems & Control Letters, 2003,50(4):263-276.
  • 10YANG Y,FU R,HUANG L.Robust analysis and synthesis for a class of uncertain nonlinear systems with multiple equilibria [J]. Systems & Control Letters, 2004,53(2):89-105.

共引文献1

同被引文献10

  • 1陈增禄,丁学文.一般非线性时变动态系统的线性定常控制方法[J].西北纺织工学院学报,1995,9(2):103-109. 被引量:4
  • 2宋夫华,李平.基于支持向量机α阶逆系统方法的非线性内模控制[J].自动化学报,2007,33(7):778-781. 被引量:34
  • 3Ting-Li Chien, Chung-Cheng Chen, Ching-Yu Hsu. Tracking con- trol of nonlinear automobile idle-speed time delay system via differ- ential geometry approach [ J ]. Journal of the Franklin Institute, 2005, 342 ( 7 ) : 760 -775.
  • 4Wu Zhengcheng, Shen Yanxia, Pan Tinglong, et al. Feedback lin- earization control of PMSM based on Differential Geometry Theory [ C]. Proceedings of the 2010 5th IEEE Conference on Industrial Electronics and Applications, 2010, 2047-2051.
  • 5Li TH, Huang C J, Chen CC. Novel fuzzy feedback linearization strategy for control via differential geometry approach [ J ]. ISA Transactions, 2010, 3 (49): 348-357.
  • 6Hai Yang, Jie Ma. Nonlinear control for autonomous underwater glider motion based on inverse system method [ J ]. Journal of Shanzhai Jiaotong University (Science) . 2010.6(15) : 713-718.
  • 7Plett, G.L. Adaptive inverse control of linear and no-nlinear sys- tems using dynamic neural networks [ J ]. IEEE Transactions on Neural Networks, 2003, 14(2) : 360-376.
  • 8Tae-Sung Yoon, Fa-guang Wang, Seung-Kyu Park, et al. Linear- ization of T-S fuzzy systems and robust H~ control[ J]. Journal of Central South University of Technology, 2001, 1 (18) : 140-145.
  • 9SUN LiYing,WANG YuZhen.Simultaneous stabilization of a class of nonlinear descriptor systems via Hamiltonian function method[J].Science in China(Series F),2009,52(11):2140-2152. 被引量:7
  • 10钱克昌,谢永杰,李小杰.基于新型动态神经元网络的逆系统方法[J].控制工程,2012,19(3):435-437. 被引量:2

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部