期刊文献+

基于支持向量机的非线性系统预测控制 被引量:21

Support Vector Machine Based Predictive Control for Nonlinear Systems
下载PDF
导出
摘要 针对离散非线性系统,提出一种可用于非线性过程的支持向量机预测控制方法,并给出了控制律的收敛性分析.该方法将复杂的非线性预测方程转化成直观而有效的线性形式,同时利用线性预测控制方法求得解析的控制律,避免了复杂的非线性优化求解,对非线性工业焦化装置温度控制的仿真结果表明了算法的有效性. A support vector machine based predictive control method and its convergence analysis for nonlinear systems is presented. The method gives a direct and effective multi-step predicting method and uses linear methods to get the control law which avoids the complicated nonlinear optimization. Simulation results of temperature control of industrial coking equipment are presented in the paper showing the efficiency of this method.
出处 《自动化学报》 EI CSCD 北大核心 2007年第10期1066-1073,共8页 Acta Automatica Sinica
基金 国家自然科学基金(60421002)资助~~
关键词 支持向量机 预测控制 非线性过程 工业焦化装置 Support vector machine, predictive control, nonlinear process, industrial coking equipment
  • 相关文献

参考文献11

  • 1Clarke D W,Mohtadi C,Tuffs P S.Generalized predictive control part Ⅰ:the basic algorithm.Automatica,1987,23(2):137-148
  • 2Miao Q,Wang S F.Nonlinear model predictive control based on support vector regression.In:Proceedings of the First International Conference on Machine Learning and Cybernetics.Beijing,China,IEEE,2002.1657-1661
  • 3张浩然,韩正之,李昌刚.基于支持向量机的未知非线性系统辨识与控制[J].上海交通大学学报,2003,37(6):927-930. 被引量:30
  • 4张浩然,韩正之,李昌刚.基于支持向量机的非线性模型预测控制[J].系统工程与电子技术,2003,25(3):330-334. 被引量:41
  • 5刘斌,苏宏业,褚健.一种基于最小二乘支持向量机的预测控制算法[J].控制与决策,2004,19(12):1399-1402. 被引量:38
  • 6Ren Y,Cao G Y,Zhu X J.Predictive control of proton exchange membrane fuel cell (PEMFC) based on support vector regression machine.In:Proceedings of the Fourth International Conference on Machine Learning and Cybernetics.Guangzhou,China,IEEE,2005.18-21
  • 7Zhong Wei-Min,He Guo-Long,Pi Dao-Ying,Sun You-Xian.SVM with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive control.Chinese Journal of Chemical Engineering,2005,13(3):373-379
  • 8Li X,Cao G Y,Zhu X J.Modeling and control of PEMFC based on least squares support vector machines.Energy Conversion and Management,2006,47(7):1032-1050
  • 9金元郁,顾兴源.改进的广义预测控制算法[J].信息与控制,1990,19(3):8-14. 被引量:39
  • 10Suykens J A K,Vandewalle J.Least square support vector machine classifiers.Neural Processing Letters,1999,9(3):293-300

二级参考文献15

  • 1Cherkassky V, Mulier F. Learning from data: concepts, theory and methods [M]. New York: John Wiley and Sons,1998.
  • 2Sjoberg J. Zhang Q. Ljung L. Nonlinear black-box modeling in system identification: a unified overview[J]. Automatica. 1995.31(12) :1691- 1724.
  • 3Vapnik V. The nature of statistical learning theory[M]. NewYork :Springer-Verlag, 1995.
  • 4Vapnik V. Statistical learning theory [M]. New York: John Wiley,1998.
  • 5Osuna E, Freund R. Training support vector machine: an application to face dection [A]. Proceedings to CVPR'97 [C]. Puerto Rico: [s. n.], 1997.130-136.
  • 6Drucker H, Wu D, Vapnik V. Support vector machine for spam categorization [J]. IEEE Trans on Neural Networks, 1999.10(5) : 1048- 1054.
  • 7Suykens K. Nonlinear modeling and support vector machines [A]. IEEE Instrument and Measurement Technology Conference [C]. Budapest : Hungary.2001.
  • 8Mukherjee S, Osuna E, Girosi F. Nonlinear prediction of chaotic time series using support vector machines [A]. Proceedings of IEEE NNSP'97 [C].Puerto Rico:[s. n.], 1997.24-26.
  • 9Davide Anguita. Andrea Boni. Luca Tagliafico.SVM performance assessment for the control of injection moulding. Processes and plasticating extrusion [J]. The International Journal of Systems Science. 2002,33 (9) : 723- 735.
  • 10Rawlings J B. Tutorial overview of model predictive control[J]. IEEE Control Systems Magazines,2000,20(3): 38-52.

共引文献165

同被引文献227

引证文献21

二级引证文献101

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部