期刊文献+

基于改进多信号分类法的异步电机转子故障特征分量的提取 被引量:20

Rotor Fault Feature Extraction of Motor Faults of Induction Motor Based on a Modified Music Method
下载PDF
导出
摘要 在基于定子电流信号进行异步电机故障诊断时,转子断条故障特征频率分量常常被电流的基频分量淹没。针对这一情况,该文提出一种新的改进的MUSIC方法来提取这一故障特征频率。MUSIC方法通过特征值分解把自相关矩阵中包含的信息空间分成信号子空间和噪声子空间两个正交的子空间,该文提出的改进方法是将信号子空间中对应最大主分量的特征向量移到噪声子空间,这样构成两个新的正交子空间I和Ⅱ。子空间I由信号中的最大主分量和噪声所对应的特征向量张成,子空间Ⅱ由其他分量的特征向量张成。把不同频率的信号投影到子空间I,基频信号在该空间的投影将远大于其他的频率分量,因此在投影的倒数谱中,基频分量被抑制,凸显出了故障频率分量。仿真和实验表明,该方法用于提取转子断条故障特征是可行并且是有效的。 It is difficult to detect the rotor broken-bar fault feature component as it always hides behind the strong supply frequency component in the spectrum of the stator current. A modified MUSIC(multiple signal classification) method is proposed in this paper to extract the rotor broken-bar fault feature component in the spectrum of the stator current. In MUSIC, the information space of the current i is divided into two orthogonal subspaces-the signal subspace and the noise subspace, by the eigenvalue decomposition of the autocorrelation matrix Ri of i. In the modified MUSIC, the eigenvectors related to the maximum eigenvalue are moved from the signal subspace to the noise subspace. Then the information space of the current i is divided into another two orthogonal subspaces-the subspace Ⅰand the subspace Ⅱ. The subspace I is spanned by the eigenvectors related to the maximum principal component and the noise. It is clear that the maximum principal component is mainly made up of the supply frequency component. The subspace Ⅱ is spanned by the other eigenvectors related to the rest components. By projecting signals with different frequencies into the subspace Ⅰ, the signal with the supply frequency has the maximum value. Consequently, in the spectrum of thereciprocal of the projecting value, the supply frequency component is cut off and the fault feature component emerges in the spectrum. The results of simulation and experiment show that the proposed method is feasible and effective.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第30期72-76,共5页 Proceedings of the CSEE
关键词 异步电动机 转子断条故障 信号子空间 改进多信号分类法 故障诊断 asynchronous motor rotor broken-bar fault signal subspace modified MUSIC fault diagnosis
  • 相关文献

参考文献9

二级参考文献41

  • 1邱阿瑞.用起动电流的时变频谱诊断鼠笼异步电机转子故障[J].中国电机工程学报,1995,15(4):267-273. 被引量:56
  • 2邱阿瑞.提取感应电动机转子故障特征的新方法[J].清华大学学报(自然科学版),1997,37(1):35-37. 被引量:36
  • 3任震,黄雯莹,石志强.小波分析及其在电力系统中的应用(三)工程应用技术[J].电力系统自动化,1997,21(3):9-12. 被引量:60
  • 4张贤达.现代信号处理[M].北京:清华大学出版社,1994.510-513.
  • 5达夫勒 P J 姜建国等(译).电机的状态监测[M].北京:水利电力出版社,1992..
  • 6马宏忠.大型交流电机故障分析与故障诊断的研究[D].南京:东南大学(Nanjing:Southeast University),2001.
  • 7Nejjari M E H B. Induction motor asymmetrical faults detection using advanced signal processing techniques[J].IEEE Trans. on EC 1999,14(2): 147-152.
  • 8Fiorenzo Filippetti, et al. Neual networks aided on-line diagnostics of induction motor rotor fault[J]. IEEE Trans. on Ind Apple. 1995,31(4): 892-899.
  • 9Cardoso A J M, Saraiva E S. On-line diagnostics of three-phase induction motors by parks vector[C]. Proceedings of the International Conference on Electrical Machines, held in Pisa, Italy, 1988.
  • 10Caxdoso A J M, Cruz S M A, Fonseca D S B. Inter-turn stator winding fault diagnosis in three-phase induction motors by Park's vector approach[J]. IEEE Transactions on Energy Conversion, 1999, 14(3):595-598.

共引文献282

同被引文献218

引证文献20

二级引证文献136

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部