期刊文献+

基于鲁棒最小二乘支持向量机的电机振动故障诊断 被引量:8

Motor Vibration Fault Detection Based on Robust LS-SVM
下载PDF
导出
摘要 对时序数据建模与辨识技术进行了分析,提出了使用鲁棒最小二乘支持向量机(LS-SVM)算法建立自回归移动平均(ARMA)时序预测模型。该模型是在LS-SVM的约束条件中考虑了鲁棒特性和时序模型参数,使之在求解的过程中对孤立点与噪声不敏感,并且能准确地辨识时序模型参数。考虑到电机振动故障诊断的输入输出数据集间存在着复杂非线性时序上的关系,通过用基于鲁棒LS-SVM的ARMA模型预报电机的振动值,从而预测电机振动故障。实验表明该模型在对非线性时间序列预测精度和稳定性上具有明显的优越性,为确保电机正常运行创造了良好条件。 The time series modeling and identification techniques have been analyzed and the autoregressive moving average (ARMA) time series model based on robust least square support vector machine method (LS-SVM) has been presented. In the model, the robust character and time series model parameters have been considered in constrain condition of LS-SVM. In the process of computation, the presented model is insensitive to the outliers and noises and can identify parameters of time series model accurately. Considering the complex nonlinear relationship in time series between the input and output data sets, the ARMA model based on robust LS-SVM has been used to predict the vibration value of motor in industrial production process and detect the fault of vibration. Finally, the experiments with practical data prove that the presented model has obvious superiority in the precision and robust of nonlinear time series prediction. Thus it provides the good environment to ensure motor normal operation.
出处 《中国电机工程学报》 EI CSCD 北大核心 2007年第30期97-102,共6页 Proceedings of the CSEE
基金 国家自然科学基金项目(60271019) 湖南省机械设备健康维护重点实验室开放基金资助项目资助(2005KF01) 重庆市自然科学基金项目资助(CSTC2007BB2406) 重庆市教委科技项目资助(KJ060614)~~
关键词 时序模型 鲁棒 最小二乘支持向量机 电机振动 time series model robust least square support vector machine motor vibration
  • 相关文献

参考文献17

  • 1Rosenstein M T, Cohen P R, Concepts from time series[C]. Fifteenth National Conference on Artificial Intelligence, Madison, Wisconsin, 1998.
  • 2Das G, Lin K, Mannila H, et al. Rule discovery from time series [C]. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, Madison, Wisconsin, 1998.
  • 3Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series databases[C]. Proceedings of the fifteenth International Conference on Data Engineering, Sydney, Australia, 1999.
  • 4Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences[J]. Data Mining and Knowledge Discovery, 1997, 1(3): 259-289.
  • 5Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural ProcessingLetters, 1999, 9(3): 293-300.
  • 6Navia-Vazquez A, Perez-Cruz F, Artes-Rodriguez A, et al. Weighted least squares training of support vector classifiers leading to compact and adaptive schemes[J]. IEEE Transactions on Neural Networks, 2001, 12(5): 1047-1059.
  • 7Gestel T V, Suykens J A K, Lanckriet G. Bayesian framework for least squares support vector machine classifiers, Gaussian processes and kernel fisher discriminant analysis[J]. Neural Computation, 2002, 15(5): 1115-1148.
  • 8Yuan Z, Burrage K, Mattick JS. Prediction of protein solvent accessibility using support vector machines[J]. Proteins: Structure, Function and Genetics, 2002, 48(3): 566-570.
  • 9Ward J J, McGuffin L J, Buxton B F, et al. Secondary structure prediction with support vector machines[J]. Bioinformatics, 2003, 19(13): 1650-1655.
  • 10Ganyun, Cheng Haozhong, Zhai Haibao, et al. Fault diagnosis of power transformer based on multi-class SVM classifier[J]. Electric Power Systems Research, 2005, 74(1): 1-7.

同被引文献111

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部