期刊文献+

ZnO纳米棒的低温制备及其光学性能表征(英文) 被引量:3

Synthesis at a Low Temperature and Optical Properties of ZnO Nanorods
下载PDF
导出
摘要 在低温条件下,利用化学溶液沉积法(CBD)成功在ITO导电玻璃衬底上生长出近一维ZnO纳米棒.本文不仅研究了生长条件,如Zn2+摩尔浓度和生长时间对纳米棒结构和形貌的影响,还利用不同衬底(Si衬底、ITO导电玻璃和玻璃)进行实验,从而研究了同一生长条件下,衬底对样品形貌和光学性能的影响.结果表明,随着Zn2+摩尔浓度的增大,纳米棒的尺寸也随着增大;当Zn2+摩尔浓度为0.1M时,纳米棒的纵横比随着生长时间的增加而减小;衬底对样品的形貌和光学特性有一定影响.PL测试表明硅衬底上生长的纳米棒有较好的光学性能. ZnO nanorods were grown on ITO conducting glass by the chemical solution deposition method (CBD) at a low temperature(90℃). The effects of different conditions, such as different molar concentration of zinc nitrate and reaction time, especially the substrates on morphologies and photoluminesecnce properties of ZnO nanorods were studied. The size of ZnO nanorods increased with molar concentration of zinc nitrate, and the nanorods with different aspect ratios also formed through tuning the reaction time when the molar concentration was 0.1 M. The length of nanorods increased significantly with the reaction time, but the thickness of the fdm deposited on the substrate only slightly increased. In addition, the nature of the substrate was found to have effect on the crystal structure and morphology of the resultant ZnO nanorods. Photoluminesecnce measurements showed that the nanorods grown on the Si substrate had a relatively stronger UV emission compared to that of the ITO conducting glass and bare glass.
出处 《吉林师范大学学报(自然科学版)》 2007年第3期13-16,共4页 Journal of Jilin Normal University:Natural Science Edition
基金 Programfor National Natural Science Foundation of China(60778040) the science andtechnol-ogy bureau of Key Program for Ministry of Education(207025) Programfor the science and technology bureau of Jilin province(20060518) Pro-gramfor the science and technology of office of Education of Jilin province(2006111) gifted youth programof Jilin province(20060123)
关键词 ZNO纳米棒 化学溶液沉积 生长条件 形貌 光致发光 ZnO nanorods chemical solution deposition reaction condition morphology photolumincscence
  • 相关文献

参考文献11

  • 1Y.Wu,et al. Germanium nanowire growth via simple vapor transport[J] .Chem. Mater. ,2000,12(3):605-607.
  • 2M. H. Huang, et al. Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport[J]. Adv. Mater., 2001,13(2):113-116.
  • 3Y. Wu, et al. Block-by-block growth of single-crystalline Si/SiGa superlattice nanowires[J]. Nano Lett, 2002,2: 83-86.
  • 4P. M. lzaki, et al. Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reaction[J]. J. Electrochem. Soc., 1997,144:1949-1952.
  • 5Z. W. Pan, et al. Nanobelts of semiconducting oxides[J]. Science, 2001,291:1947- 1949.
  • 6Lionel Vayssieres. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions[J]. Adv. Mater. ,2003,15(5) :464-466.
  • 7J. H. Yang et al. ,J. Alloys Compd. (2007) ,doi: 10. 1016/j.jallcom.2006.12.135.
  • 8D. M. Bengal, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett., 1997,70(17):223-2232.
  • 9S. A. Studeninkin, et al. Dynamics of photoexcied carriers in ZnO epitaxial thin films[J]. J. Appl. Phys., 1998,84(4):2287-2294.
  • 10D. Li,et al. ZnO nanostructures fabricated by the chemical and evaporation methods[J]. Appl. Phys. Lett. ,2004,85(9):1601-1603.

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部