摘要
本文提出了用多小波神经网络诊断模拟电路故障的新方法。根据多小波的多分辨率分析思想,构造了一种多小波神经网络,其激励函数为具有紧支撑集、对称性和正交性的多尺度函数和多小波函数。用多小波神经网络和单小波神经网络对实例电路进行故障诊断,仿真结果表明,与单小波神经网络相比,多小波神经网络不仅学习收敛速度快,而且能够更准确地对模拟电路进行故障诊断。
A new method of analog circuit fault diagnosis based on multiwavelet neural network is presented in this paper. According to the muhiresolution analysis thought in muhiwavelet space, an orthonormal multiwavelet neural network model for learning is obtained. The activation functions of the model are compactly supported, symmetric and orthonormal multiscaling functions and multiwavelet functions. The multiwavelet neural network and wavelet neural network are used in the fault diagnosis of an example circuit respectively. Simulation results indicate that multiwavelet neural network converges more rapidly than wavelet neural network and can carry out fault diagnosis of analog circuit more accurately.
出处
《仪器仪表学报》
EI
CAS
CSCD
北大核心
2007年第10期1870-1873,共4页
Chinese Journal of Scientific Instrument
基金
国家自然科学基金(60372001)资助项目
关键词
模拟电路
故障诊断
多小波神经网络
多分辨分析
analog circuit
fault diagnosis
muhiwavelet network
multiresolution analysis