期刊文献+

基于神经网络的实时入侵检测系统的研究和实现 被引量:8

Instant intrusion detection system based on neural network
下载PDF
导出
摘要 根据TCP/IP协议族攻击的特征,提出在传输层上将捕获的数据包分成三类(UDP、TCP和ICMP)分别进行编码并输入到三个不同的神经网络中训练、检测。根据以上思想设计并实现了一个基于BP神经网络的实时入侵检测系统的原型。该原型系统具有通用性和可扩展性,能够根据需要灵活调整网络结构和训练参数,可以发展为更精确的网络入侵检测系统。最后给出了实验设计及其结果,证明了文中对数据包分类处理的方法既能减少网络训练的次数,又能提高网络检测的精度。 According to the characteristics of the attacks against TCP/IP protocol,transferring layer data packets can be classified into three types (namely UDP,TCP and ICMP) and handled respectively.The three types of packets are used as input to train and formulate different neural networks for intrusion detection.With the proposed method,a novel instant intrusion detection system is designed and achieved.The system has favorable usability,extensibility and the parameters of the network structure can be flexibly adjusted to achieve satisfactory detection performance.Experimental results prove that disposing data packets respectively can reduce the time of neural network training and improve the accuracy of network intrusion detection.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第30期120-123,212,共5页 Computer Engineering and Applications
关键词 网络安全 入侵检测 BP神经网络 传输层数据包 network security intrusion detection BP neural network packets of transferring layer
  • 相关文献

参考文献13

  • 1Common intrusion detection framework[EB/OL].[2002].http://www.isi. edu/gost/cidf/.
  • 2Bace R,Mell P.National Institute of Standards and Technology. Intrusion detection systems:NIST Special Publication on Intrusion Detection Systems, 2000: 76-79.
  • 3Fox K L,Henning R R,Reed J H,et al.A neural network approach towards intrusion detection [C]//Proceedings of the 13th National Computer Security Conference, 1990:125-134.
  • 4Tan K.The application of neural networks to UNIX computer security[C]//Proceedings of the IEEE International Conference on Neural Networks, 1995, 1:476-481.
  • 5Kumar G P,Venkateram P.Security management architecture for access control to network resourees[J].IEE Proceedings on Computers and Digital Techniques, 1997; 144(6) :362-370.
  • 6Ghosh A K,Wanken J,Charron F.Detecting anomalous and un-known intrusions against programs[C]//Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC'98),December 1998:259-267.
  • 7Lippmann R,Cunningham R.Improving intrusion detection performance using keyword selection and neural networks[J].Computer Networks, 2000,34 (4): 597-603.
  • 8Cannady J.Artificial neural networks for misuse detection[C]//Proceedings of the 21st National Information Systems Security Conference (NISSC' 98), October 5 -8,1998 : 443-456.
  • 9连一峰.基于遗传神经网络的入侵检测系统[D].成都:成都理工大学,2003,6.
  • 10杨森,姚光开,柴乔林.应用自组织特征映射神经网络技术实现分布式入侵检测[J].计算机应用,2003,23(8):54-57. 被引量:4

二级参考文献13

  • 1胡守仁.神经网络导论[M].北京:国防科大出版社,1995.113.
  • 2Mukkamala S, Janoski G, Sung A. Intrusion Detection: Support Vector Machines and Neural Networks [ DB/OL]. http://www.computer, org/students/looking/2OO2fall/3, pdf, 2002.
  • 3KDD - CUP-99 Task Description [ EB / OL ] . http: / / kdd. ics. uci.edu/databasea/kddcup99/task, html.
  • 4Frank,Jeremy.Artificial intelligence and intrusion detection:current and future directions[C].In Proceedings of the 17th National Computer Security Conference.1994.
  • 5Cannady J..Artificial neural networks for misuse detection[C].In Proceedings of the 1998 National Information Systems Security Conference(NISSC'98),Arlington,VA.,October 5-8 1998:443~456
  • 6Endler D.. Intrusion detection: applying machine learning to solaris audit data[C]. In Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC'98), 268~279, Los Alamitos, CA, December 1998. IEEE Computer Society, IEEE Computer Society Press. Scottsdale, AZ.
  • 7Cannady J.. Artificial neural networks for misuse detection[C]. In Proceedings of the 1998 National Information Systems Security Conference (NISSC'98), 443~456, October 5-8 1998. Arlington, VA.
  • 8Ghosh A.K. ,Schwartzbard A.,Schatz M.. Using program behavior profiles for intrusion detection[C]. In Proceedings of the SANS Intrusion Detection Workshop, February 1999. To appear.
  • 9刘春林,何建敏.神经网络用于模式识别分类的改进算法[J].东南大学学报(自然科学版),1999,29(1):20-24. 被引量:6
  • 10李鸿培,王新梅.基于神经网络的入侵检测系统模型[J].西安电子科技大学学报,1999,26(5):667-670. 被引量:41

共引文献18

同被引文献56

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部