期刊文献+

一种基于密度的并行聚类算法

Efficient parallel clustering algorithm based on density
下载PDF
导出
摘要 针对微阵列基因表达数据聚类的高维复杂性,提出了一种基于密度的并行聚类算法,在APRAM模型的分布式存储系统中,通过欧几里德距离矩阵和密度函数两次时间复杂度为O(np2)的计算,可使聚类过程的时间复杂度为O(npK),以增加一次计算的代价来降低聚类过程的时间复杂度。基于8结点的机群计算实验表明:本算法能够达到较同类算法更高的并行加速比,提高高维生物数据的聚类速度。 Aim at the high complexity of the gene expression data clustering,puts forward a parallel clustering algorithms based on the density.Uses MPI under the APRAM model,passing two compute with parallel time complexity is O(n^2/P ) that of the P Euclidean distance matrix and the density function,can make the parallel time complexity of clustering be O(nK/P),reduces the P time complexity of clustering through adding one compute.The experiment based on eight nodes indicates that this algorithm can attain higher parallel accelerate ratio than the same kind algorithm,raise the clustering rate of the high dimension living data.
出处 《计算机工程与应用》 CSCD 北大核心 2007年第30期157-161,共5页 Computer Engineering and Applications
基金 国家自然科学基金(the National Natural Science Foundation of China under Grant No.60603053) 教育部重点项目(No.105128)。
关键词 并行运算 APRAM模型 划分聚类 密度函数 时间复杂度 parallel computing APRAM model partition-clustering density function time complexity
  • 相关文献

参考文献14

  • 1Schena M,Shalon D,Davis R W,et al.Quantitative monitoring of gene expression patterns with a complementary DNA micro array[J]. Science, 1995,270( 5235 ) : 467-470.
  • 2Olson C F.Parallel algorithms for hierarchical clustering[J].Parallel Computing, 1995,21 : 1313-1325.
  • 3Chiu S L.Fuzzy model identification based on cluster estimation[J]. Journal of Intelligent and Fuzzy Systems, 1994,2(3):267-278.
  • 4Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press, 1987.
  • 5Ken-LiLi,Ren-FaLi,Qing-HuaLi.Optimal Parallel Algorithm for the Knapsack Problem Without Memory Conflicts[J].Journal of Computer Science & Technology,2004,19(6):760-768. 被引量:11
  • 6Li X.Parallel algorithms for hierarchical clustering and clustering validity [J].IEEE Trans Pattern Analysis and Machine Intelligence, 1990,12:1088-1092.
  • 7Herrero J.A hierarchical unsupervised growing neural network for clustering gene expression patterns [J].Bioinformatics, 2001,17 (2) : 126-136.
  • 8Wang H,Wang W,Yang J,et al.Clustering by pattern similarity in large data sets [C]//Proceedings of ACM SIGMOD International Conference on Management of Data,2002.
  • 9Tsai H R,Horng S J,Lee S S,et al.Parallel hierarchical clustering algorithms on processor arrays with a recontigurable bus system[J].Pattern Recognition, 1997,30:801-815.
  • 10Chazelle B.A minimum spanning tree algorithm with inverse-ackerman type complexity[J].ACM J, 2000,47( 6 ) : 1028-1047.

二级参考文献17

  • 1Garey M R, Johnson D S. Computers and Intractability: A Guide to the Theory of NP-Completeness. San Francisco, W H Freeman and Co., 1979.
  • 2Shamir A. A polynomial-time algorithm for breaking the basic Merkle-Hellman cryptosystem. IEEE Trans. Inform. Theory, 1984, 30(5): 699-704.
  • 3Chor B, Rivest R L. A knapsack-type public key cryptosystem based on arithmetic in finite fields. IEEE Trans. Inform. Theory, 1988, 34(5): 901-909.
  • 4Laih C S, Lee J Y, Harn L, Su Y K. Linearly shift knapsack public-key cryptosystem. IEEE J. Selected Areas Commun.., 1989, 7(4): 534-539.
  • 5Horowitz E, Sahni S. Computing partitions with applications to the knapsack problem. J. ACM, 1974, 21(2):277-292.
  • 6Aardal K, Bixby R E, Hurkens C A J, Lenstra A K et al. Market split and basis reduction: Towards a solution of the Cornuejils-Dawande instances. In The 7th International IPCO Conference, 1999, Lecture Notes in Computer Science 1610, pp.1-16.
  • 7Schroeppel R, Shamir A. A T = 0(2^n/^2), S = 0(2^n/^4)algorithm for certain NP-complete problems. SIAM J.Comput., 1981, 10(3): 456-464.
  • 8Ferreira A G. A parallel time/hardware tradeoff T. H=0(2^n/^2) for the knapsack problem. IEEE Trans. Comput., 1991, 40(2): 221-225.
  • 9Karnin E D. A parallel algorithm for the knapsack problem. IEEE Trans, Comput., 1984, 33(5): 404-408.
  • 10Amirazizi H R, Hellman M E. Time-memory -processor tradeoffs. IEEE Trans. Inform. Theory, 1988, 34(3):502-512.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部