期刊文献+

递归构造低密度校验(LDPC)码的方法

Recursive construction of LDPC codes
原文传递
导出
摘要 针对Tanner图中圈的增加会影响码的性能的问题,提出了一种递归构造低密度校验(LDPC)码的方法。该方法利用一个短的LDPC码的校验矩阵作为其母矩阵,在此基础上采用循环置换矩阵构造一个长的LDPC码。通过对循环转置矩阵的参数进行约束,可以保证所构造的长码的Tanner图中指定长度的圈的个数等于或者小于其短码,且可以构造规则或者非规则的LDPC码。仿真结果表明,采用该方法构造的LDPC码具有较低的误码平台,其性能与好的随机LDPC码几乎相同。 To reduce the cycles in the Tanner graph which may affect the code performance, a recursive method to construct low-density parity-check (LDPC) codes was proposed. The method used a parity-check matrix of a short LDPC code as its mother matrix upon which a long code was constructed with circulant permutation matrices. By choosing the circulant permutation matrix parameters properly, the number of cycles having a given length in the Tanner graph of the constructed long codes were equal to or less than that of the short code. Either regular or irregular LDPC codes were constructed. Simulation results show that the LDPC codes constructed by this method have very low error-floor and almost no performance degradation due to their special structure as compared with random LDPC codes.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2007年第10期1638-1641,共4页 Journal of Tsinghua University(Science and Technology)
关键词 低密度校验(LDPC)码 构造 循环置换矩阵 low-density parity-check (LDPC) codes construction circulant permutation matrices cycles
  • 相关文献

参考文献12

  • 1MacKay D J C. Good error-correcting codes based on very sparse matrices [J]. IEEE Transaction on Information Theory, 1999, 45(2): 399-431.
  • 2Richardson T J, Urbanke R L. The capacity of low density parity check codes under message passing decoding [J]. IEEE Transaction on Information Theory, 2001, 47(2): 599 - 618.
  • 3Richardson T J, Shokrollahi M A, Urbanke R L. Design of capacity approaching irregular low-density parity-check codes [J]. IEEE Transaction on Information Theory, 2001, 47(2): 399-431.
  • 4Kou Y, Lin S, Fossorier M P C. Low-density parity-check codes based on finite geometries: A rediscovery and new results [J]. IEEE Transaction on Information Theory, 2001, 47(7): 2711-2736.
  • 5Vasic B, Milenkovic O. Combinatorial constructions of low-density parity check codes for iterative decoding [J]. IEEE Transaction on Information Theory, 2004, 50(6): 1156-1176.
  • 6Fossorier M P C. Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J]. IEEE Transaction on Information Theory, 2004, 50(8): 1788- 1793.
  • 7Chen L, Xu J, Djurdjevic I, et al. Near Shannon limit quasi-cyclic low-density parity check codes [J]. IEEE Transaction on Communications, 2004, 52(7) : 1038 - 1042.
  • 8Li Z W, Chen L, Zeng L Q, et al. Efficient encoding of quasi-cyclic LDPC codes [J]. IEEE Transaction on Communications, 2005, 54(1): 71-81.
  • 9Miladinovic N, Fossorier M P C. Systematic recursive construction of LDPC codes [J]. IEEE Communications Letters, 2004, 8(5): 302-304.
  • 10Myung S, Yang K. Extension of quasi-cyclic LDPC codes by lifting [C]// IEEE International Symposium on Information Theory, Adelaide, Australia, 2005 : 2305 - 2309.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部